Model reference multiple-degree-of-freedom adaptive control with HONUs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F16%3A00305514" target="_blank" >RIV/68407700:21220/16:00305514 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7727843/" target="_blank" >http://ieeexplore.ieee.org/document/7727843/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IJCNN.2016.7727843" target="_blank" >10.1109/IJCNN.2016.7727843</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Model reference multiple-degree-of-freedom adaptive control with HONUs
Popis výsledku v původním jazyce
This paper presents a modification of reference-model adaptive control with a layered network of higher-order neural units (HONUs) as adaptive state-feedback controllers. The degree of freedom of such neural controller is deemed here as the number of applied HONUs of a customizable polynomial order and as of their individually customizable input vectors. Furthermore, the control scheme is enhanced because potentially occurring disturbances of controlled variable can result in that the sample-by-sample adapted controllers may tend to adaptively force the plant output to merely follow the reference model output because input data are affected by the error of disturbance, while the overall control loop dynamics would be more accurately adapted if no perturbation occurs or if the reference model is actuated with actually measured variables. Furthermore, the controller weight updates usually involve some step-delayed computations that might be in fact recalculated with the latest updated weights, so the controller learning can be improved.
Název v anglickém jazyce
Model reference multiple-degree-of-freedom adaptive control with HONUs
Popis výsledku anglicky
This paper presents a modification of reference-model adaptive control with a layered network of higher-order neural units (HONUs) as adaptive state-feedback controllers. The degree of freedom of such neural controller is deemed here as the number of applied HONUs of a customizable polynomial order and as of their individually customizable input vectors. Furthermore, the control scheme is enhanced because potentially occurring disturbances of controlled variable can result in that the sample-by-sample adapted controllers may tend to adaptively force the plant output to merely follow the reference model output because input data are affected by the error of disturbance, while the overall control loop dynamics would be more accurately adapted if no perturbation occurs or if the reference model is actuated with actually measured variables. Furthermore, the controller weight updates usually involve some step-delayed computations that might be in fact recalculated with the latest updated weights, so the controller learning can be improved.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of International Joint Conference on Neural Networks 2016
ISBN
9781509006199
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
4895-4900
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Vancouver
Datum konání akce
24. 7. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—