An Approach to Stable Gradient Descent Adaptation of Higher-Order Neural Units
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F17%3A00242907" target="_blank" >RIV/68407700:21220/17:00242907 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/7487017/" target="_blank" >http://ieeexplore.ieee.org/document/7487017/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TNNLS.2016.2572310" target="_blank" >10.1109/TNNLS.2016.2572310</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Approach to Stable Gradient Descent Adaptation of Higher-Order Neural Units
Popis výsledku v původním jazyce
Stability evaluation of a weight-update system of higher-order neural units (HONUs) with polynomial aggregation of neural inputs (also known as classes of polynomial neural networks) for adaptation of both feedforward and recurrent HONUs by a gradient descent method is introduced. An essential core of the approach is based on spectral radius of a weight-update system, and it allows stability monitoring and its maintenance at every adaptation step individually. Assuring stability of the weight-update system (at every single adaptation step) naturally results in adaptation stability of the whole neural architecture that adapts to target data. As an aside, the used approach highlights the fact that the weight optimization of HONU is a linear problem, so the proposed approach can be generally extended to any neural architecture that is linear in its adaptable parameters
Název v anglickém jazyce
An Approach to Stable Gradient Descent Adaptation of Higher-Order Neural Units
Popis výsledku anglicky
Stability evaluation of a weight-update system of higher-order neural units (HONUs) with polynomial aggregation of neural inputs (also known as classes of polynomial neural networks) for adaptation of both feedforward and recurrent HONUs by a gradient descent method is introduced. An essential core of the approach is based on spectral radius of a weight-update system, and it allows stability monitoring and its maintenance at every adaptation step individually. Assuring stability of the weight-update system (at every single adaptation step) naturally results in adaptation stability of the whole neural architecture that adapts to target data. As an aside, the used approach highlights the fact that the weight optimization of HONU is a linear problem, so the proposed approach can be generally extended to any neural architecture that is linear in its adaptable parameters
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Neural Networks and Learning Systems
ISSN
2162-237X
e-ISSN
2162-2388
Svazek periodika
28
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
2022-2034
Kód UT WoS článku
000407761500005
EID výsledku v databázi Scopus
2-s2.0-84973527093