Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An Approach to Stable Gradient Descent Adaptation of Higher-Order Neural Units

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F17%3A00242907" target="_blank" >RIV/68407700:21220/17:00242907 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ieeexplore.ieee.org/document/7487017/" target="_blank" >http://ieeexplore.ieee.org/document/7487017/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TNNLS.2016.2572310" target="_blank" >10.1109/TNNLS.2016.2572310</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An Approach to Stable Gradient Descent Adaptation of Higher-Order Neural Units

  • Popis výsledku v původním jazyce

    Stability evaluation of a weight-update system of higher-order neural units (HONUs) with polynomial aggregation of neural inputs (also known as classes of polynomial neural networks) for adaptation of both feedforward and recurrent HONUs by a gradient descent method is introduced. An essential core of the approach is based on spectral radius of a weight-update system, and it allows stability monitoring and its maintenance at every adaptation step individually. Assuring stability of the weight-update system (at every single adaptation step) naturally results in adaptation stability of the whole neural architecture that adapts to target data. As an aside, the used approach highlights the fact that the weight optimization of HONU is a linear problem, so the proposed approach can be generally extended to any neural architecture that is linear in its adaptable parameters

  • Název v anglickém jazyce

    An Approach to Stable Gradient Descent Adaptation of Higher-Order Neural Units

  • Popis výsledku anglicky

    Stability evaluation of a weight-update system of higher-order neural units (HONUs) with polynomial aggregation of neural inputs (also known as classes of polynomial neural networks) for adaptation of both feedforward and recurrent HONUs by a gradient descent method is introduced. An essential core of the approach is based on spectral radius of a weight-update system, and it allows stability monitoring and its maintenance at every adaptation step individually. Assuring stability of the weight-update system (at every single adaptation step) naturally results in adaptation stability of the whole neural architecture that adapts to target data. As an aside, the used approach highlights the fact that the weight optimization of HONU is a linear problem, so the proposed approach can be generally extended to any neural architecture that is linear in its adaptable parameters

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20301 - Mechanical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Neural Networks and Learning Systems

  • ISSN

    2162-237X

  • e-ISSN

    2162-2388

  • Svazek periodika

    28

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    2022-2034

  • Kód UT WoS článku

    000407761500005

  • EID výsledku v databázi Scopus

    2-s2.0-84973527093