CAPACITY OF SPACES OF PROPERTIES Formulae, Approximations and Qualitative shapes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F18%3A00322308" target="_blank" >RIV/68407700:21220/18:00322308 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.13164/mendel.2018.1.039" target="_blank" >https://doi.org/10.13164/mendel.2018.1.039</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.13164/mendel.2018.1.039" target="_blank" >10.13164/mendel.2018.1.039</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CAPACITY OF SPACES OF PROPERTIES Formulae, Approximations and Qualitative shapes
Popis výsledku v původním jazyce
This article focuses on the exploration of spaces and models in which we describe the behavior of complex systems as special shapes. We understand these shapes both as a configuration of properties and their values, and on the other, as the formation of symbols and their manifestations. The article discusses three basic types of shapes: formulae, approximations and qualitative shapes. Their analysis then arrives at the capacities of the spaces to display these shapes. The central tool of analysis is the combination of Matroid Theory and Ramsey theory of graph. By systematical analysis of formulae we get the concepts of additional variables and their number. We use basic relations based on the terms matroid, its base, and Ramsey numbers. These relations are then generalized to the field of approximations and qualitative shapes. The article points to the possibilities of expanding the spaces of properties including those that are not available by measurement but are detectable as emergences.
Název v anglickém jazyce
CAPACITY OF SPACES OF PROPERTIES Formulae, Approximations and Qualitative shapes
Popis výsledku anglicky
This article focuses on the exploration of spaces and models in which we describe the behavior of complex systems as special shapes. We understand these shapes both as a configuration of properties and their values, and on the other, as the formation of symbols and their manifestations. The article discusses three basic types of shapes: formulae, approximations and qualitative shapes. Their analysis then arrives at the capacities of the spaces to display these shapes. The central tool of analysis is the combination of Matroid Theory and Ramsey theory of graph. By systematical analysis of formulae we get the concepts of additional variables and their number. We use basic relations based on the terms matroid, its base, and Ramsey numbers. These relations are then generalized to the field of approximations and qualitative shapes. The article points to the possibilities of expanding the spaces of properties including those that are not available by measurement but are detectable as emergences.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MENDEL - Soft Computing Journal
ISSN
1803-3814
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
39-46
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85071486090