Effects of braking conditions on nanoparticle emissions from passenger car friction brakes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F21%3A00350512" target="_blank" >RIV/68407700:21220/21:00350512 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/21:43923436 RIV/61989100:27640/21:10247503 RIV/61989100:27650/21:10247503 RIV/60460709:41310/21:85731 RIV/67985858:_____/21:00559337
Výsledek na webu
<a href="https://doi.org/10.1016/j.scitotenv.2021.147779" target="_blank" >https://doi.org/10.1016/j.scitotenv.2021.147779</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scitotenv.2021.147779" target="_blank" >10.1016/j.scitotenv.2021.147779</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effects of braking conditions on nanoparticle emissions from passenger car friction brakes
Popis výsledku v původním jazyce
Automobile friction brakes generate, in addition to coarse particles generated by mechanical processes, highly variable amount of nanoparticles from high temperature processes. The effects of braking conditions - speed, deceleration rate, brake rotor temperatures - on nanoparticle production were investigated here, aiming to provide practical guidance for reducing emissions through driving style and traffic management. Typical brake pads and a rotor from a common passenger car were subjected, on a brake dynamometer, to three runs of the WLTP brake cycle developed for brake wear particle measurements. Additionally, four sets of common brake pads were subjected to those parts of standardized brake performance tests believed to be reasonably realistic for common driving. Particle size distributions (5.6-560 nm electric mobility diameter, without removal of volatiles) show a dominant peak at 10 nm commensurate to the severity of braking and a non-linear increase of the total particle number at higher braking powers and higher total energy dissipated. The average emissions for three runs of the WLTP brake cycle were 3.3 x 10(10) particles/km, while the harshest deceleration, 175-100 km/h at 5.28 m.s(-2), has produced 8.4 to 38 x 10(13) particles, corresponding to 2.5-11.5 thousands of km of WLTP-like driving. While previous studies have correlated higher PN production with higher average brake rotor temperature, a more complex relationship between nanoparticle emissions and a combination of initial rotor temperature, total energy dissipated and braking power has been observed here. From a driver behavior and regulatory perspective, it appears limiting harsh braking and braking from high speeds, possibly through improved driving practices, road design and traffic management, may potentially reduce brake wear nanoparticles. From the measurement perspective, it appears that "off-cycle" braking, even if relatively infrequent, may be associated with exponentially higher emiss
Název v anglickém jazyce
Effects of braking conditions on nanoparticle emissions from passenger car friction brakes
Popis výsledku anglicky
Automobile friction brakes generate, in addition to coarse particles generated by mechanical processes, highly variable amount of nanoparticles from high temperature processes. The effects of braking conditions - speed, deceleration rate, brake rotor temperatures - on nanoparticle production were investigated here, aiming to provide practical guidance for reducing emissions through driving style and traffic management. Typical brake pads and a rotor from a common passenger car were subjected, on a brake dynamometer, to three runs of the WLTP brake cycle developed for brake wear particle measurements. Additionally, four sets of common brake pads were subjected to those parts of standardized brake performance tests believed to be reasonably realistic for common driving. Particle size distributions (5.6-560 nm electric mobility diameter, without removal of volatiles) show a dominant peak at 10 nm commensurate to the severity of braking and a non-linear increase of the total particle number at higher braking powers and higher total energy dissipated. The average emissions for three runs of the WLTP brake cycle were 3.3 x 10(10) particles/km, while the harshest deceleration, 175-100 km/h at 5.28 m.s(-2), has produced 8.4 to 38 x 10(13) particles, corresponding to 2.5-11.5 thousands of km of WLTP-like driving. While previous studies have correlated higher PN production with higher average brake rotor temperature, a more complex relationship between nanoparticle emissions and a combination of initial rotor temperature, total energy dissipated and braking power has been observed here. From a driver behavior and regulatory perspective, it appears limiting harsh braking and braking from high speeds, possibly through improved driving practices, road design and traffic management, may potentially reduce brake wear nanoparticles. From the measurement perspective, it appears that "off-cycle" braking, even if relatively infrequent, may be associated with exponentially higher emiss
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-04682S" target="_blank" >GA19-04682S: Biodostupnost antimonu a jeho interakce s prostředím v místech dopravních uzlů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The Science of the Total Environment
ISSN
0048-9697
e-ISSN
1879-1026
Svazek periodika
788
Číslo periodika v rámci svazku
147779
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000662648800007
EID výsledku v databázi Scopus
2-s2.0-85106349084