Using machine learning to predict lifetime under isothermal low-cycle fatigue and thermo-mechanical fatigue loading
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00358685" target="_blank" >RIV/68407700:21220/22:00358685 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.ijfatigue.2022.107067" target="_blank" >https://doi.org/10.1016/j.ijfatigue.2022.107067</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijfatigue.2022.107067" target="_blank" >10.1016/j.ijfatigue.2022.107067</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using machine learning to predict lifetime under isothermal low-cycle fatigue and thermo-mechanical fatigue loading
Popis výsledku v původním jazyce
In this article, machine learning is used to predict lifetime under isothermal low-cycle fatigue and thermo-mechanical fatigue loading, both of which represent the most complex loadings that couple creep, fatigue and oxidation damage. A uniaxial fatigue and fatigue–creep dataset, which was obtained for temperatures of between 300 °C and 600 °C for a low-alloy martensitic steel, is utilized in this study. Two different machine learning based approaches to lifetime prediction are demonstrated. The first approach is based only on a shallow neural network, whereas the second approach is proposed as a combination of a sequence learning based model – either long short-term memory network or gated recurrent unit – with the shallow neural network. A good correlation between the experiment and the prediction suggests that lifetime under complex thermo-mechanical loading can be reasonably predicted via the proposed machine learning based damage models.
Název v anglickém jazyce
Using machine learning to predict lifetime under isothermal low-cycle fatigue and thermo-mechanical fatigue loading
Popis výsledku anglicky
In this article, machine learning is used to predict lifetime under isothermal low-cycle fatigue and thermo-mechanical fatigue loading, both of which represent the most complex loadings that couple creep, fatigue and oxidation damage. A uniaxial fatigue and fatigue–creep dataset, which was obtained for temperatures of between 300 °C and 600 °C for a low-alloy martensitic steel, is utilized in this study. Two different machine learning based approaches to lifetime prediction are demonstrated. The first approach is based only on a shallow neural network, whereas the second approach is proposed as a combination of a sequence learning based model – either long short-term memory network or gated recurrent unit – with the shallow neural network. A good correlation between the experiment and the prediction suggests that lifetime under complex thermo-mechanical loading can be reasonably predicted via the proposed machine learning based damage models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Fatigue
ISSN
0142-1123
e-ISSN
1879-3452
Svazek periodika
163
Číslo periodika v rámci svazku
107067
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000829347600004
EID výsledku v databázi Scopus
2-s2.0-85132933722