Using hybrid physics-informed neural networks to predict lifetime under multiaxial fatigue loading
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00368411" target="_blank" >RIV/68407700:21220/23:00368411 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.engfracmech.2023.109351" target="_blank" >https://doi.org/10.1016/j.engfracmech.2023.109351</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engfracmech.2023.109351" target="_blank" >10.1016/j.engfracmech.2023.109351</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using hybrid physics-informed neural networks to predict lifetime under multiaxial fatigue loading
Popis výsledku v původním jazyce
In this article, a machine learning approach is utilized to predict lifetime under multiaxial fatigue loading. A novel hybrid physics-informed neural network is proposed, where a combination of a LSTM/GRU cell and a fully connected layer is used to extract the damage parameter of a loading cycle. A newly proposed logarithmic activation function is then used to introduce the power law relationship between the damage parameter and the predicted fatigue life. In addition, the selected parameters of the suggested network are physically guided. Two data pre-processing methods are used to ascertain the rotational invariance of the axial–torsional loading conditions. The prediction capability of the suggested approach is demonstrated by the experimental datasets that consist of axial–torsional test results obtained for 42CrMo4 steel and for 2024-T3 aluminium alloy. A good correlation between the predicted and experimental data was achieved. Finally, the extrapolation capability of the proposed approach is demonstrated through modelling the stress-life curves for the data-points outside the experimental data range.
Název v anglickém jazyce
Using hybrid physics-informed neural networks to predict lifetime under multiaxial fatigue loading
Popis výsledku anglicky
In this article, a machine learning approach is utilized to predict lifetime under multiaxial fatigue loading. A novel hybrid physics-informed neural network is proposed, where a combination of a LSTM/GRU cell and a fully connected layer is used to extract the damage parameter of a loading cycle. A newly proposed logarithmic activation function is then used to introduce the power law relationship between the damage parameter and the predicted fatigue life. In addition, the selected parameters of the suggested network are physically guided. Two data pre-processing methods are used to ascertain the rotational invariance of the axial–torsional loading conditions. The prediction capability of the suggested approach is demonstrated by the experimental datasets that consist of axial–torsional test results obtained for 42CrMo4 steel and for 2024-T3 aluminium alloy. A good correlation between the predicted and experimental data was achieved. Finally, the extrapolation capability of the proposed approach is demonstrated through modelling the stress-life curves for the data-points outside the experimental data range.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-06645S" target="_blank" >GA21-06645S: Výzkum životnosti strojních součástí při víceosém teplotně-mechanickém zatěžování s proměnnou amplitudou</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Engineering Fracture Mechanics
ISSN
0013-7944
e-ISSN
1873-7315
Svazek periodika
289
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
—
Kód UT WoS článku
001027508200001
EID výsledku v databázi Scopus
2-s2.0-85162882691