Intelligent data systems for building energy workflow: Data pipelines, LSTM efficiency prediction and more
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00359088" target="_blank" >RIV/68407700:21220/22:00359088 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21720/22:00359088
Výsledek na webu
<a href="https://doi.org/10.1016/j.enbuild.2022.112135" target="_blank" >https://doi.org/10.1016/j.enbuild.2022.112135</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.enbuild.2022.112135" target="_blank" >10.1016/j.enbuild.2022.112135</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intelligent data systems for building energy workflow: Data pipelines, LSTM efficiency prediction and more
Popis výsledku v původním jazyce
The data collection process for thermal energy storage (TES) system is largely still and restricted to data collection only. This leaves a gap to study the transient state physical process of charge and discharge as it proceeds. In addition, these devices are restricted and cannot perform on spot model fitting, prediction and other data curation techniques. This paper demonstrates the application of intelligent data layer with neural networks for evaluating and predicting end to end performance of heat pump integrated stratified thermal energy storage (TES) system. The data modelling – acquisition, curation, and transformation is done in situ (dynamically). The key objectives are: A method to demonstrate the application of data-layer framework to visualize in real-time energy efficiency of TES. To fit the second law of thermodynamics-based exergy model. This will help engineers to intuitively understand the energy efficiency of their devices using novel data pipeline. To demonstrate the use-case of hyper-tuned DL framework of LSTM to predict the energy efficiency in the process loop. Predicted results show tuned correlation with the parametrized experimental data, even during the load phase, where substantial amount of math (convection/mixing) is present for the network to learn (train/ test).
Název v anglickém jazyce
Intelligent data systems for building energy workflow: Data pipelines, LSTM efficiency prediction and more
Popis výsledku anglicky
The data collection process for thermal energy storage (TES) system is largely still and restricted to data collection only. This leaves a gap to study the transient state physical process of charge and discharge as it proceeds. In addition, these devices are restricted and cannot perform on spot model fitting, prediction and other data curation techniques. This paper demonstrates the application of intelligent data layer with neural networks for evaluating and predicting end to end performance of heat pump integrated stratified thermal energy storage (TES) system. The data modelling – acquisition, curation, and transformation is done in situ (dynamically). The key objectives are: A method to demonstrate the application of data-layer framework to visualize in real-time energy efficiency of TES. To fit the second law of thermodynamics-based exergy model. This will help engineers to intuitively understand the energy efficiency of their devices using novel data pipeline. To demonstrate the use-case of hyper-tuned DL framework of LSTM to predict the energy efficiency in the process loop. Predicted results show tuned correlation with the parametrized experimental data, even during the load phase, where substantial amount of math (convection/mixing) is present for the network to learn (train/ test).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TN01000056" target="_blank" >TN01000056: Centrum pokročilých materiálů a efektivních budov</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy and Buildings
ISSN
0378-7788
e-ISSN
1872-6178
Svazek periodika
267
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000800348800001
EID výsledku v databázi Scopus
2-s2.0-85129786517