Energy modeling of thermal energy storage (TES) using intelligent stream processing system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00359159" target="_blank" >RIV/68407700:21220/22:00359159 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21720/22:00359159
Výsledek na webu
<a href="https://doi.org/10.1016/j.egyr.2022.08.012" target="_blank" >https://doi.org/10.1016/j.egyr.2022.08.012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.egyr.2022.08.012" target="_blank" >10.1016/j.egyr.2022.08.012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Energy modeling of thermal energy storage (TES) using intelligent stream processing system
Popis výsledku v původním jazyce
Thermal energy storage (TES) is the core element of renewable energy system (RES) and can considerably affect its overall efficiency. An effective thermal energy storage (TES) should enhance the stratification by restricting inlet mixing. In this paper, an experimental study is presented to evaluate the performance of thermal energy storage (TES). Discharging of the tank was conducted with different inlet flow rates to assess the effect of inlet mixing on thermal stratification. Results are quantified in terms of temperature distribution, MIX, and Richardson number and were visualized to predict the behavior of TES. In addition, the data parsing is done in live mode with ad-hoc built stream-processing data layer. Finally a methodology for time series prediction in the context of TES using high end LSTM network is framed. It was concluded that discharging rate of 800 l/h has the maximum mixing and thus the worst stratification, while prediction efficiency fell well within 5.2% of the error range.
Název v anglickém jazyce
Energy modeling of thermal energy storage (TES) using intelligent stream processing system
Popis výsledku anglicky
Thermal energy storage (TES) is the core element of renewable energy system (RES) and can considerably affect its overall efficiency. An effective thermal energy storage (TES) should enhance the stratification by restricting inlet mixing. In this paper, an experimental study is presented to evaluate the performance of thermal energy storage (TES). Discharging of the tank was conducted with different inlet flow rates to assess the effect of inlet mixing on thermal stratification. Results are quantified in terms of temperature distribution, MIX, and Richardson number and were visualized to predict the behavior of TES. In addition, the data parsing is done in live mode with ad-hoc built stream-processing data layer. Finally a methodology for time series prediction in the context of TES using high end LSTM network is framed. It was concluded that discharging rate of 800 l/h has the maximum mixing and thus the worst stratification, while prediction efficiency fell well within 5.2% of the error range.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/TN01000056" target="_blank" >TN01000056: Centrum pokročilých materiálů a efektivních budov</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Energy Reports
ISSN
2352-4847
e-ISSN
2352-4847
Svazek periodika
8
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
1321-1335
Kód UT WoS článku
000841651400076
EID výsledku v databázi Scopus
2-s2.0-85135913749