Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Second law performance prediction of heat pump integrated stratified thermal energy storage system using long short-term memory neural networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21720%2F23%3A00362933" target="_blank" >RIV/68407700:21720/23:00362933 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21220/23:00362933

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.est.2023.106699" target="_blank" >https://doi.org/10.1016/j.est.2023.106699</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.est.2023.106699" target="_blank" >10.1016/j.est.2023.106699</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Second law performance prediction of heat pump integrated stratified thermal energy storage system using long short-term memory neural networks

  • Popis výsledku v původním jazyce

    Thermal energy storages (TES) are transient state energy devices. These devices are used in renewable energy systems as a buffer for non-coincidence in heat supply and demand. TESs use thermal stratification to ensure high efficiency in heat storage and acquisition. This article is focused on predicting the performance of thermal energy storage (TES) integrated with heat pump using neural networks. In addition, exergy and entropy equations were derived for the calculation and prediction of the stratification efficiency in storage systems and of the performance factor (PF) of renewable energy systems (RES). As for data analytics, real time data-streaming edge devices were customized. The model fitting and prediction were done directly on the edge devices. The key objectives and findings are: - To demonstrate stream-data processing framework which can graphically represent the stratification decay of an active Thermal Energy Storage (TES) charge/discharge process in real time. - Derivation of a custom exergy equation for stratification efficiency and streaming it graphically in real time. The optimized key performance index (KPI) at the heat pump end i.e. coefficient of performance (COP) or performance of factor (PF) was 3.3, and at charge and discharge end, in terms of efficiency was 83 % and 84 % respectively. - A deep neuronal network applying a long short-term memory (LSTM) architecture for predicting stratification deterioration in the charge/discharge cycle with a prediction error below 5 %.

  • Název v anglickém jazyce

    Second law performance prediction of heat pump integrated stratified thermal energy storage system using long short-term memory neural networks

  • Popis výsledku anglicky

    Thermal energy storages (TES) are transient state energy devices. These devices are used in renewable energy systems as a buffer for non-coincidence in heat supply and demand. TESs use thermal stratification to ensure high efficiency in heat storage and acquisition. This article is focused on predicting the performance of thermal energy storage (TES) integrated with heat pump using neural networks. In addition, exergy and entropy equations were derived for the calculation and prediction of the stratification efficiency in storage systems and of the performance factor (PF) of renewable energy systems (RES). As for data analytics, real time data-streaming edge devices were customized. The model fitting and prediction were done directly on the edge devices. The key objectives and findings are: - To demonstrate stream-data processing framework which can graphically represent the stratification decay of an active Thermal Energy Storage (TES) charge/discharge process in real time. - Derivation of a custom exergy equation for stratification efficiency and streaming it graphically in real time. The optimized key performance index (KPI) at the heat pump end i.e. coefficient of performance (COP) or performance of factor (PF) was 3.3, and at charge and discharge end, in terms of efficiency was 83 % and 84 % respectively. - A deep neuronal network applying a long short-term memory (LSTM) architecture for predicting stratification deterioration in the charge/discharge cycle with a prediction error below 5 %.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20704 - Energy and fuels

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TN01000056" target="_blank" >TN01000056: Centrum pokročilých materiálů a efektivních budov</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Energy Storage

  • ISSN

    2352-152X

  • e-ISSN

    2352-1538

  • Svazek periodika

    61

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    1-15

  • Kód UT WoS článku

    000926359000001

  • EID výsledku v databázi Scopus

    2-s2.0-85146946856