Second law performance prediction of heat pump integrated stratified thermal energy storage system using long short-term memory neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21720%2F23%3A00362933" target="_blank" >RIV/68407700:21720/23:00362933 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21220/23:00362933
Výsledek na webu
<a href="https://doi.org/10.1016/j.est.2023.106699" target="_blank" >https://doi.org/10.1016/j.est.2023.106699</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.est.2023.106699" target="_blank" >10.1016/j.est.2023.106699</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Second law performance prediction of heat pump integrated stratified thermal energy storage system using long short-term memory neural networks
Popis výsledku v původním jazyce
Thermal energy storages (TES) are transient state energy devices. These devices are used in renewable energy systems as a buffer for non-coincidence in heat supply and demand. TESs use thermal stratification to ensure high efficiency in heat storage and acquisition. This article is focused on predicting the performance of thermal energy storage (TES) integrated with heat pump using neural networks. In addition, exergy and entropy equations were derived for the calculation and prediction of the stratification efficiency in storage systems and of the performance factor (PF) of renewable energy systems (RES). As for data analytics, real time data-streaming edge devices were customized. The model fitting and prediction were done directly on the edge devices. The key objectives and findings are: - To demonstrate stream-data processing framework which can graphically represent the stratification decay of an active Thermal Energy Storage (TES) charge/discharge process in real time. - Derivation of a custom exergy equation for stratification efficiency and streaming it graphically in real time. The optimized key performance index (KPI) at the heat pump end i.e. coefficient of performance (COP) or performance of factor (PF) was 3.3, and at charge and discharge end, in terms of efficiency was 83 % and 84 % respectively. - A deep neuronal network applying a long short-term memory (LSTM) architecture for predicting stratification deterioration in the charge/discharge cycle with a prediction error below 5 %.
Název v anglickém jazyce
Second law performance prediction of heat pump integrated stratified thermal energy storage system using long short-term memory neural networks
Popis výsledku anglicky
Thermal energy storages (TES) are transient state energy devices. These devices are used in renewable energy systems as a buffer for non-coincidence in heat supply and demand. TESs use thermal stratification to ensure high efficiency in heat storage and acquisition. This article is focused on predicting the performance of thermal energy storage (TES) integrated with heat pump using neural networks. In addition, exergy and entropy equations were derived for the calculation and prediction of the stratification efficiency in storage systems and of the performance factor (PF) of renewable energy systems (RES). As for data analytics, real time data-streaming edge devices were customized. The model fitting and prediction were done directly on the edge devices. The key objectives and findings are: - To demonstrate stream-data processing framework which can graphically represent the stratification decay of an active Thermal Energy Storage (TES) charge/discharge process in real time. - Derivation of a custom exergy equation for stratification efficiency and streaming it graphically in real time. The optimized key performance index (KPI) at the heat pump end i.e. coefficient of performance (COP) or performance of factor (PF) was 3.3, and at charge and discharge end, in terms of efficiency was 83 % and 84 % respectively. - A deep neuronal network applying a long short-term memory (LSTM) architecture for predicting stratification deterioration in the charge/discharge cycle with a prediction error below 5 %.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/TN01000056" target="_blank" >TN01000056: Centrum pokročilých materiálů a efektivních budov</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Energy Storage
ISSN
2352-152X
e-ISSN
2352-1538
Svazek periodika
61
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000926359000001
EID výsledku v databázi Scopus
2-s2.0-85146946856