Using adaptive filters and artificial signal for spindle bearing condition diagnostics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00359884" target="_blank" >RIV/68407700:21220/22:00359884 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21730/22:00359884
Výsledek na webu
<a href="https://iiav.org/content/archives_icsv_last/2022_icsv28/content/papers/papers/full_paper_455_20220515192555466.pdf" target="_blank" >https://iiav.org/content/archives_icsv_last/2022_icsv28/content/papers/papers/full_paper_455_20220515192555466.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using adaptive filters and artificial signal for spindle bearing condition diagnostics
Popis výsledku v původním jazyce
The analysis of vibration signals sensed by accelerometers is currently the standard method for de-termining the condition of rolling bearings. In the case of machine tools, the signal obtained is often disturbed by extraneous sources masking the signal, such as frequency converters, auxiliary aggre-gates, etc. Cheap or improperly selected measuring equipment can also be the cause of signal distor-tion. It is therefore advisable to suppress interfering signals before the actual analysis. This article describes a method to identify and subsequently filter out such signals. Modified adaptive filters were used to mitigate unwanted signals. In the development of a suitable algorithm, artificial signals of slightly damaged bearing masked by white noise were used in the first stage. The modified adaptive filtering algorithms were then applied to the signals measured on a spindle with slightly damaged rolling bearing raceway.
Název v anglickém jazyce
Using adaptive filters and artificial signal for spindle bearing condition diagnostics
Popis výsledku anglicky
The analysis of vibration signals sensed by accelerometers is currently the standard method for de-termining the condition of rolling bearings. In the case of machine tools, the signal obtained is often disturbed by extraneous sources masking the signal, such as frequency converters, auxiliary aggre-gates, etc. Cheap or improperly selected measuring equipment can also be the cause of signal distor-tion. It is therefore advisable to suppress interfering signals before the actual analysis. This article describes a method to identify and subsequently filter out such signals. Modified adaptive filters were used to mitigate unwanted signals. In the development of a suitable algorithm, artificial signals of slightly damaged bearing masked by white noise were used in the first stage. The modified adaptive filtering algorithms were then applied to the signals measured on a spindle with slightly damaged rolling bearing raceway.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008432" target="_blank" >EF16_026/0008432: Klastr 4.0 - Metodologie systémové integrace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 28th International Congress on Sound and Vibration
ISBN
978-981-18-5070-7
ISSN
2329-3675
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1-8
Název nakladatele
IIAV - International Institute of Acoustics and Vibration
Místo vydání
Auburn
Místo konání akce
Singapur
Datum konání akce
24. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—