Calibration of the Robotic Arm with Corrections using Local Linear Neuro-fuzzy Models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00362039" target="_blank" >RIV/68407700:21220/22:00362039 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.17973/MMSJ.2022_12_2022160" target="_blank" >https://doi.org/10.17973/MMSJ.2022_12_2022160</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17973/MMSJ.2022_12_2022160" target="_blank" >10.17973/MMSJ.2022_12_2022160</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Calibration of the Robotic Arm with Corrections using Local Linear Neuro-fuzzy Models
Popis výsledku v původním jazyce
The paper deals with the enhancement of the robotic arm calibration using corrections based on local linear neuro-fuzzy models. After the standard calibration of the geometric parameters in the robot's kinematic model, there are still residual errors between the measured positions and the positions predicted by the model. The source of these errors are various non-geometric parameters and nonlinear phenomena that traditional kinematic calibration models do not include. The neuro-fuzzy model based on a locally linear model tree can approximate the residual error as a function of the robot's joint angles. Adding this approximation to the output of the calibrated robot model significantly increases the accuracy of the end-effector position. The results of the described method were verified and compared with other approaches on a simulation model of a flexible planar two-link mechanism. Experimental verification was performed on an industrial robot Stäubli TX200 with data measured by Leica laser tracking device.
Název v anglickém jazyce
Calibration of the Robotic Arm with Corrections using Local Linear Neuro-fuzzy Models
Popis výsledku anglicky
The paper deals with the enhancement of the robotic arm calibration using corrections based on local linear neuro-fuzzy models. After the standard calibration of the geometric parameters in the robot's kinematic model, there are still residual errors between the measured positions and the positions predicted by the model. The source of these errors are various non-geometric parameters and nonlinear phenomena that traditional kinematic calibration models do not include. The neuro-fuzzy model based on a locally linear model tree can approximate the residual error as a function of the robot's joint angles. Adding this approximation to the output of the calibrated robot model significantly increases the accuracy of the end-effector position. The results of the described method were verified and compared with other approaches on a simulation model of a flexible planar two-link mechanism. Experimental verification was performed on an industrial robot Stäubli TX200 with data measured by Leica laser tracking device.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008404" target="_blank" >EF16_026/0008404: Strojírenská výrobní technika a přesné strojírenství</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MM Science Journal
ISSN
1803-1269
e-ISSN
1805-0476
Svazek periodika
2022
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
6225-6232
Kód UT WoS článku
000898328400001
EID výsledku v databázi Scopus
2-s2.0-85144060748