Increase of Industrial Robot Accuracy Based on Kinematic Errors Compensation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00361901" target="_blank" >RIV/68407700:21220/22:00361901 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.17973/MMSJ.2022_12_2022149" target="_blank" >https://doi.org/10.17973/MMSJ.2022_12_2022149</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17973/MMSJ.2022_12_2022149" target="_blank" >10.17973/MMSJ.2022_12_2022149</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Increase of Industrial Robot Accuracy Based on Kinematic Errors Compensation
Popis výsledku v původním jazyce
Industrial robots are used in many technical applications from simple pick-and-place tasks to complex machining, welding and assembly applications. The repeatability of the robots is usually high. However, the accuracy is much lower, and it decreases with the robot size selected. Robot calibration represents a possible way to increase accuracy, and two main approaches have been distinguished. Kinematic calibration deals with geometric errors only, and the robot is considered as a rigid body. By contrast, non-kinematic calibration takes into account further sources of errors. This paper deals with kinematic calibration, where an artifact is attached to a robot flange and its position is measured using a laser tracker. The novelty of the method is based on the consecutive rotation of only a single joint, where the artifact trajectory is circular. Real robot geometry is calculated based on identified circles. Numerical simulations seem promising, as well as verification with Staubli TX2-90, where the accuracy was increased more than 43%.
Název v anglickém jazyce
Increase of Industrial Robot Accuracy Based on Kinematic Errors Compensation
Popis výsledku anglicky
Industrial robots are used in many technical applications from simple pick-and-place tasks to complex machining, welding and assembly applications. The repeatability of the robots is usually high. However, the accuracy is much lower, and it decreases with the robot size selected. Robot calibration represents a possible way to increase accuracy, and two main approaches have been distinguished. Kinematic calibration deals with geometric errors only, and the robot is considered as a rigid body. By contrast, non-kinematic calibration takes into account further sources of errors. This paper deals with kinematic calibration, where an artifact is attached to a robot flange and its position is measured using a laser tracker. The novelty of the method is based on the consecutive rotation of only a single joint, where the artifact trajectory is circular. Real robot geometry is calculated based on identified circles. Numerical simulations seem promising, as well as verification with Staubli TX2-90, where the accuracy was increased more than 43%.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_026%2F0008404" target="_blank" >EF16_026/0008404: Strojírenská výrobní technika a přesné strojírenství</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MM Science Journal
ISSN
1803-1269
e-ISSN
1805-0476
Svazek periodika
2022
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
7
Strana od-do
6169-6175
Kód UT WoS článku
000897787600001
EID výsledku v databázi Scopus
2-s2.0-85144027569