Evolutionary algorithms in robot calibration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F23%3A00373270" target="_blank" >RIV/68407700:21220/23:00373270 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1080/10426914.2023.2238368" target="_blank" >https://doi.org/10.1080/10426914.2023.2238368</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10426914.2023.2238368" target="_blank" >10.1080/10426914.2023.2238368</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evolutionary algorithms in robot calibration
Popis výsledku v původním jazyce
Robots are universal mechanical systems that are now ubiquitous in manufacturing. One of the most important properties of industrial robots is their kinematic accuracy. Robot's accuracy is influenced by many factors including manufacture accuracy of mechanical parts and other aspects. Calibration is a technique that allows to identify design and other parameters of the robot to achieve its highest accuracy. There are widely used traditional kinematic calibration methods based on kinematic models of the robot. Simulation is used to compare results of traditional calibration method and a newly developed method based on multi-objective deep learning evolutionary algorithm. EvoDN2 was used together with a reference vector-based evolutionary algorithm, cRVEA, used for optimization, in order to find optimal estimates of the robot parameters. It is well known that the evalutionary algorithms are capable of dealing with noisy data from measurement. Results and comparison of both techniques are discussed and evaluated.
Název v anglickém jazyce
Evolutionary algorithms in robot calibration
Popis výsledku anglicky
Robots are universal mechanical systems that are now ubiquitous in manufacturing. One of the most important properties of industrial robots is their kinematic accuracy. Robot's accuracy is influenced by many factors including manufacture accuracy of mechanical parts and other aspects. Calibration is a technique that allows to identify design and other parameters of the robot to achieve its highest accuracy. There are widely used traditional kinematic calibration methods based on kinematic models of the robot. Simulation is used to compare results of traditional calibration method and a newly developed method based on multi-objective deep learning evolutionary algorithm. EvoDN2 was used together with a reference vector-based evolutionary algorithm, cRVEA, used for optimization, in order to find optimal estimates of the robot parameters. It is well known that the evalutionary algorithms are capable of dealing with noisy data from measurement. Results and comparison of both techniques are discussed and evaluated.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials and Manufacturing Processes
ISSN
1042-6914
e-ISSN
1532-2475
Svazek periodika
38
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
2051-2070
Kód UT WoS článku
001048238000001
EID výsledku v databázi Scopus
2-s2.0-85166940363