Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Gnielinski’s correlation and a modern temperature-oscillation method for measuring heat transfer coefficients

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00366757" target="_blank" >RIV/68407700:21220/22:00366757 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1051/epjconf/202226901009" target="_blank" >https://doi.org/10.1051/epjconf/202226901009</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1051/epjconf/202226901009" target="_blank" >10.1051/epjconf/202226901009</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Gnielinski’s correlation and a modern temperature-oscillation method for measuring heat transfer coefficients

  • Popis výsledku v původním jazyce

    The heat transfer coefficient is one of the most important parameters in the design of apparatuses in which convective heat transport takes place. Classical direct methods based on determining basic thermal quantities can be used for measuring heat transfer coefficients. Another option is to measure concentrations, electric current or other quantities that can be transformed to thermal quantities using the analogy between heat and mass transport. The temperature-oscillation method is less frequently used, although the theoretical basis of the method dates back to 1997, and although the method has the major advantage that the heat transfer coefficients can be measured without making any contact with the heat transfer surface. In the temperature-oscillation method, the heat transfer surface is exposed to an oscillating heat flux, and the temperature response on this surface can be measured by a contactless method (e.g. infra-red thermography). The heat transfer coefficients can be determined on the basis of mathematical relations between the oscillating heat flux and the temperature response. However, the method depends on an appropriate method for processing the measured data when it is necessary to correct some conditions that are not included in the mathematical model. This paper evaluates the impact of processing the experimental data on the resulting heat transfer coefficients in one of the basic geometrical configurations – the flow of a liquid in a pipe with a circular cross section. In this paper, we present the results of a comparison of real experiments based on the temperature oscillation method and numerical modeling of the heat transfer in this geometry, using the ANSYS CFD commercial system.

  • Název v anglickém jazyce

    Gnielinski’s correlation and a modern temperature-oscillation method for measuring heat transfer coefficients

  • Popis výsledku anglicky

    The heat transfer coefficient is one of the most important parameters in the design of apparatuses in which convective heat transport takes place. Classical direct methods based on determining basic thermal quantities can be used for measuring heat transfer coefficients. Another option is to measure concentrations, electric current or other quantities that can be transformed to thermal quantities using the analogy between heat and mass transport. The temperature-oscillation method is less frequently used, although the theoretical basis of the method dates back to 1997, and although the method has the major advantage that the heat transfer coefficients can be measured without making any contact with the heat transfer surface. In the temperature-oscillation method, the heat transfer surface is exposed to an oscillating heat flux, and the temperature response on this surface can be measured by a contactless method (e.g. infra-red thermography). The heat transfer coefficients can be determined on the basis of mathematical relations between the oscillating heat flux and the temperature response. However, the method depends on an appropriate method for processing the measured data when it is necessary to correct some conditions that are not included in the mathematical model. This paper evaluates the impact of processing the experimental data on the resulting heat transfer coefficients in one of the basic geometrical configurations – the flow of a liquid in a pipe with a circular cross section. In this paper, we present the results of a comparison of real experiments based on the temperature oscillation method and numerical modeling of the heat transfer in this geometry, using the ANSYS CFD commercial system.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20402 - Chemical process engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000753" target="_blank" >EF16_019/0000753: Centrum výzkumu nízkouhlíkových energetických technologií</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    EPJ Web of Conferences

  • ISBN

  • ISSN

    2100-014X

  • e-ISSN

    2100-014X

  • Počet stran výsledku

    12

  • Strana od-do

  • Název nakladatele

    EPJ Web of Conferences

  • Místo vydání

    Les Ulis Cedex A

  • Místo konání akce

    Liberec

  • Datum konání akce

    23. 11. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku