Gnielinski’s correlation and a modern temperature-oscillation method for measuring heat transfer coefficients
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F22%3A00366757" target="_blank" >RIV/68407700:21220/22:00366757 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1051/epjconf/202226901009" target="_blank" >https://doi.org/10.1051/epjconf/202226901009</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/epjconf/202226901009" target="_blank" >10.1051/epjconf/202226901009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Gnielinski’s correlation and a modern temperature-oscillation method for measuring heat transfer coefficients
Popis výsledku v původním jazyce
The heat transfer coefficient is one of the most important parameters in the design of apparatuses in which convective heat transport takes place. Classical direct methods based on determining basic thermal quantities can be used for measuring heat transfer coefficients. Another option is to measure concentrations, electric current or other quantities that can be transformed to thermal quantities using the analogy between heat and mass transport. The temperature-oscillation method is less frequently used, although the theoretical basis of the method dates back to 1997, and although the method has the major advantage that the heat transfer coefficients can be measured without making any contact with the heat transfer surface. In the temperature-oscillation method, the heat transfer surface is exposed to an oscillating heat flux, and the temperature response on this surface can be measured by a contactless method (e.g. infra-red thermography). The heat transfer coefficients can be determined on the basis of mathematical relations between the oscillating heat flux and the temperature response. However, the method depends on an appropriate method for processing the measured data when it is necessary to correct some conditions that are not included in the mathematical model. This paper evaluates the impact of processing the experimental data on the resulting heat transfer coefficients in one of the basic geometrical configurations – the flow of a liquid in a pipe with a circular cross section. In this paper, we present the results of a comparison of real experiments based on the temperature oscillation method and numerical modeling of the heat transfer in this geometry, using the ANSYS CFD commercial system.
Název v anglickém jazyce
Gnielinski’s correlation and a modern temperature-oscillation method for measuring heat transfer coefficients
Popis výsledku anglicky
The heat transfer coefficient is one of the most important parameters in the design of apparatuses in which convective heat transport takes place. Classical direct methods based on determining basic thermal quantities can be used for measuring heat transfer coefficients. Another option is to measure concentrations, electric current or other quantities that can be transformed to thermal quantities using the analogy between heat and mass transport. The temperature-oscillation method is less frequently used, although the theoretical basis of the method dates back to 1997, and although the method has the major advantage that the heat transfer coefficients can be measured without making any contact with the heat transfer surface. In the temperature-oscillation method, the heat transfer surface is exposed to an oscillating heat flux, and the temperature response on this surface can be measured by a contactless method (e.g. infra-red thermography). The heat transfer coefficients can be determined on the basis of mathematical relations between the oscillating heat flux and the temperature response. However, the method depends on an appropriate method for processing the measured data when it is necessary to correct some conditions that are not included in the mathematical model. This paper evaluates the impact of processing the experimental data on the resulting heat transfer coefficients in one of the basic geometrical configurations – the flow of a liquid in a pipe with a circular cross section. In this paper, we present the results of a comparison of real experiments based on the temperature oscillation method and numerical modeling of the heat transfer in this geometry, using the ANSYS CFD commercial system.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20402 - Chemical process engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000753" target="_blank" >EF16_019/0000753: Centrum výzkumu nízkouhlíkových energetických technologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EPJ Web of Conferences
ISBN
—
ISSN
2100-014X
e-ISSN
2100-014X
Počet stran výsledku
12
Strana od-do
—
Název nakladatele
EPJ Web of Conferences
Místo vydání
Les Ulis Cedex A
Místo konání akce
Liberec
Datum konání akce
23. 11. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—