Specific Heat Capacity Extraction of Soybean Oil/MXene Nanofluids Using Optimized Long Short-Term Memory
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00374735" target="_blank" >RIV/68407700:21220/24:00374735 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ACCESS.2024.3391379" target="_blank" >https://doi.org/10.1109/ACCESS.2024.3391379</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2024.3391379" target="_blank" >10.1109/ACCESS.2024.3391379</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Specific Heat Capacity Extraction of Soybean Oil/MXene Nanofluids Using Optimized Long Short-Term Memory
Popis výsledku v původním jazyce
Researchers are turning to nanofluids in PV/T hybrid systems for enhanced efficiency due to nanoparticle dispersion, improving thermal and optical properties over conventional fluids. Three different concentrations of formulated soybean oil based MXene nanofluids are considered 0.025, 0.075 and 0.125 wt.%. Maximum specific heat capacity nanofluids (cpNF) augmentation is 24.49% at 0.125 wt.% loading of Ti3C2 in the base oil. The calculation of the cpNF based on the temperature and nanoflakes concentration is very expensive and time-consuming as it should be calculated via the practical test investigation. This study employs a long short-term memory (LSTM) as an efficient machine learning method to extract the surrogate model for calculating the cpNF based on the temperature and nanoflakes concentration. In addition, a couple of other machines learning methods, including support vector regression (SVR), group method of data handling (GMDH), and multi-layer perceptron (MLP), are developed to prove the higher efficiency of the recently proposed LSTM model in the calculation of the cpNF. In addition, the Bayesian optimization technique is employed to calculate the optimal hyperparameters of the developed SVR, GMDH, MLP and LSTM to reach the highest efficiency of the system in predicting the cpNF based on temperature and nanoflakes concentration. Notably, 95% of the recorded data via differential scanning calorimetry (DSC) is used for training machine learning techniques. In comparison, 5% is used for testing and validation purposes of the developed algorithm. The newly proposed optimized SVR, GMDH, MLP, and LSTM are modelled in MATLAB software. The results show that the newly proposed optimized LSTM model can reduce the mean square error in calculating the cpNF by 99%, 99% and 91% compared with SVM, GMDH and MLP, respectively. The proposed methodology can be used to calculate other thermophysical properties of nanofluids.
Název v anglickém jazyce
Specific Heat Capacity Extraction of Soybean Oil/MXene Nanofluids Using Optimized Long Short-Term Memory
Popis výsledku anglicky
Researchers are turning to nanofluids in PV/T hybrid systems for enhanced efficiency due to nanoparticle dispersion, improving thermal and optical properties over conventional fluids. Three different concentrations of formulated soybean oil based MXene nanofluids are considered 0.025, 0.075 and 0.125 wt.%. Maximum specific heat capacity nanofluids (cpNF) augmentation is 24.49% at 0.125 wt.% loading of Ti3C2 in the base oil. The calculation of the cpNF based on the temperature and nanoflakes concentration is very expensive and time-consuming as it should be calculated via the practical test investigation. This study employs a long short-term memory (LSTM) as an efficient machine learning method to extract the surrogate model for calculating the cpNF based on the temperature and nanoflakes concentration. In addition, a couple of other machines learning methods, including support vector regression (SVR), group method of data handling (GMDH), and multi-layer perceptron (MLP), are developed to prove the higher efficiency of the recently proposed LSTM model in the calculation of the cpNF. In addition, the Bayesian optimization technique is employed to calculate the optimal hyperparameters of the developed SVR, GMDH, MLP and LSTM to reach the highest efficiency of the system in predicting the cpNF based on temperature and nanoflakes concentration. Notably, 95% of the recorded data via differential scanning calorimetry (DSC) is used for training machine learning techniques. In comparison, 5% is used for testing and validation purposes of the developed algorithm. The newly proposed optimized SVR, GMDH, MLP, and LSTM are modelled in MATLAB software. The results show that the newly proposed optimized LSTM model can reduce the mean square error in calculating the cpNF by 99%, 99% and 91% compared with SVM, GMDH and MLP, respectively. The proposed methodology can be used to calculate other thermophysical properties of nanofluids.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
2169-3536
Svazek periodika
12
Číslo periodika v rámci svazku
04
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
59049-59062
Kód UT WoS článku
001225909500001
EID výsledku v databázi Scopus
2-s2.0-85190785507