Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Specific Heat Capacity Extraction of Soybean Oil/MXene Nanofluids Using Optimized Long Short-Term Memory

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21220%2F24%3A00374735" target="_blank" >RIV/68407700:21220/24:00374735 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/ACCESS.2024.3391379" target="_blank" >https://doi.org/10.1109/ACCESS.2024.3391379</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2024.3391379" target="_blank" >10.1109/ACCESS.2024.3391379</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Specific Heat Capacity Extraction of Soybean Oil/MXene Nanofluids Using Optimized Long Short-Term Memory

  • Popis výsledku v původním jazyce

    Researchers are turning to nanofluids in PV/T hybrid systems for enhanced efficiency due to nanoparticle dispersion, improving thermal and optical properties over conventional fluids. Three different concentrations of formulated soybean oil based MXene nanofluids are considered 0.025, 0.075 and 0.125 wt.%. Maximum specific heat capacity nanofluids (cpNF) augmentation is 24.49% at 0.125 wt.% loading of Ti3C2 in the base oil. The calculation of the cpNF based on the temperature and nanoflakes concentration is very expensive and time-consuming as it should be calculated via the practical test investigation. This study employs a long short-term memory (LSTM) as an efficient machine learning method to extract the surrogate model for calculating the cpNF based on the temperature and nanoflakes concentration. In addition, a couple of other machines learning methods, including support vector regression (SVR), group method of data handling (GMDH), and multi-layer perceptron (MLP), are developed to prove the higher efficiency of the recently proposed LSTM model in the calculation of the cpNF. In addition, the Bayesian optimization technique is employed to calculate the optimal hyperparameters of the developed SVR, GMDH, MLP and LSTM to reach the highest efficiency of the system in predicting the cpNF based on temperature and nanoflakes concentration. Notably, 95% of the recorded data via differential scanning calorimetry (DSC) is used for training machine learning techniques. In comparison, 5% is used for testing and validation purposes of the developed algorithm. The newly proposed optimized SVR, GMDH, MLP, and LSTM are modelled in MATLAB software. The results show that the newly proposed optimized LSTM model can reduce the mean square error in calculating the cpNF by 99%, 99% and 91% compared with SVM, GMDH and MLP, respectively. The proposed methodology can be used to calculate other thermophysical properties of nanofluids.

  • Název v anglickém jazyce

    Specific Heat Capacity Extraction of Soybean Oil/MXene Nanofluids Using Optimized Long Short-Term Memory

  • Popis výsledku anglicky

    Researchers are turning to nanofluids in PV/T hybrid systems for enhanced efficiency due to nanoparticle dispersion, improving thermal and optical properties over conventional fluids. Three different concentrations of formulated soybean oil based MXene nanofluids are considered 0.025, 0.075 and 0.125 wt.%. Maximum specific heat capacity nanofluids (cpNF) augmentation is 24.49% at 0.125 wt.% loading of Ti3C2 in the base oil. The calculation of the cpNF based on the temperature and nanoflakes concentration is very expensive and time-consuming as it should be calculated via the practical test investigation. This study employs a long short-term memory (LSTM) as an efficient machine learning method to extract the surrogate model for calculating the cpNF based on the temperature and nanoflakes concentration. In addition, a couple of other machines learning methods, including support vector regression (SVR), group method of data handling (GMDH), and multi-layer perceptron (MLP), are developed to prove the higher efficiency of the recently proposed LSTM model in the calculation of the cpNF. In addition, the Bayesian optimization technique is employed to calculate the optimal hyperparameters of the developed SVR, GMDH, MLP and LSTM to reach the highest efficiency of the system in predicting the cpNF based on temperature and nanoflakes concentration. Notably, 95% of the recorded data via differential scanning calorimetry (DSC) is used for training machine learning techniques. In comparison, 5% is used for testing and validation purposes of the developed algorithm. The newly proposed optimized SVR, GMDH, MLP, and LSTM are modelled in MATLAB software. The results show that the newly proposed optimized LSTM model can reduce the mean square error in calculating the cpNF by 99%, 99% and 91% compared with SVM, GMDH and MLP, respectively. The proposed methodology can be used to calculate other thermophysical properties of nanofluids.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20303 - Thermodynamics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    04

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    14

  • Strana od-do

    59049-59062

  • Kód UT WoS článku

    001225909500001

  • EID výsledku v databázi Scopus

    2-s2.0-85190785507