Decision planning knowledge representation framework: A case-study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F03%3A03093568" target="_blank" >RIV/68407700:21230/03:03093568 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decision planning knowledge representation framework: A case-study
Popis výsledku v původním jazyce
This paper discusses experiences and perspectives of utilisation of declarative knowledge structures as a convenient knowledge base medium in configuration expert systems. Although many successful systems have been developed, these are often difficult tomaintain and to generalize in rapidly changing domains. In this paper we address the problem of building intelligent knowledge based systems with emphasis on their maintainability. Firstly, several industrial applications of proof planning, a theorem proving technique, will be described and their advantages and flaws will be discussed. This discussion is followed by the theoretical foundation of decision planning knowledge representation framework that, based on proof planning, facilitates separate administration of inference problem solving knowledge and the domain theory axioms. Machine learning methods for maintaining the inference knowledge to be up-to-date with permanently changing domain theory are commented and evaluated.
Název v anglickém jazyce
Decision planning knowledge representation framework: A case-study
Popis výsledku anglicky
This paper discusses experiences and perspectives of utilisation of declarative knowledge structures as a convenient knowledge base medium in configuration expert systems. Although many successful systems have been developed, these are often difficult tomaintain and to generalize in rapidly changing domains. In this paper we address the problem of building intelligent knowledge based systems with emphasis on their maintainability. Firstly, several industrial applications of proof planning, a theorem proving technique, will be described and their advantages and flaws will be discussed. This discussion is followed by the theoretical foundation of decision planning knowledge representation framework that, based on proof planning, facilitates separate administration of inference problem solving knowledge and the domain theory axioms. Machine learning methods for maintaining the inference knowledge to be up-to-date with permanently changing domain theory are commented and evaluated.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Mathematics and Artificial Intelligence
ISSN
1012-2443
e-ISSN
—
Svazek periodika
39
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
28
Strana od-do
147-174
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—