Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Není k dispozici

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F04%3A03099560" target="_blank" >RIV/68407700:21230/04:03099560 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Speech Recognition Methods Applied to Biomedical Signals Processing

  • Popis výsledku v původním jazyce

    The paper focuses on processing of long biological signals used during monitoring procedures like in the case of portable Holter device for arrythmia analysis (ECG), intracranial pressure monitoring (ICP) in intensive care unit or overnight electroencephalogram monitoring (EEG) for sleep apnea detection. Two methods taken from speech processing are proposed: Dynamic Time Warping (DTW) and Hidden Markov Models (HMM). The unsupervised analysis of ECG and ICP beats is carried out using hierarchical clustering approach. In case of EEG, first the estimation of sleep stages is performed and next the different breathing events are detected by HMM by means of Viterbi inference. We show that for the first two problems DTW outperforms HMM while in the third casethe HMM inference capability makes HMM suitable for sleep apnea diagnosis.

  • Název v anglickém jazyce

    Speech Recognition Methods Applied to Biomedical Signals Processing

  • Popis výsledku anglicky

    The paper focuses on processing of long biological signals used during monitoring procedures like in the case of portable Holter device for arrythmia analysis (ECG), intracranial pressure monitoring (ICP) in intensive care unit or overnight electroencephalogram monitoring (EEG) for sleep apnea detection. Two methods taken from speech processing are proposed: Dynamic Time Warping (DTW) and Hidden Markov Models (HMM). The unsupervised analysis of ECG and ICP beats is carried out using hierarchical clustering approach. In case of EEG, first the estimation of sleep stages is performed and next the different breathing events are detected by HMM by means of Viterbi inference. We show that for the first two problems DTW outperforms HMM while in the third casethe HMM inference capability makes HMM suitable for sleep apnea diagnosis.

Klasifikace

  • Druh

    A - Audiovizuální tvorba

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2004

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • ISBN

    0-7803-8439-3

  • Místo vydání

    Los Alamitos

  • Název nakladatele resp. objednatele

  • Verze

  • Identifikační číslo nosiče

    neuvedeno