Není k dispozici
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F04%3A03105733" target="_blank" >RIV/68407700:21230/04:03105733 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficiency-conscious Propositionalization for Relational Learning
Popis výsledku v původním jazyce
Systems aiming at discovering interesting knowledge in data, now commonly called data mining systems, are typically employed in finding patterns in a single relational table. Most of mainstream data mining tools are not applicable in the more challengingtask of finding knowledge in structured data represented by a multi-relational database. Although a family of methods known as inductive logic programming have been developed to tackle that challenge by immediate means, the idea of adapting structured data into a simpler form digestible by the wealth of AVL systems has been always tempting to data miners. To this end, we present a method based on constructing first-order logic features that conducts this kind of conversion, also known as propositionalization. It incorporates some basic principles suggested in previous research and provides significant enhancements that lead to remarkable improvements in efficiency of the feature- construction process.
Název v anglickém jazyce
Efficiency-conscious Propositionalization for Relational Learning
Popis výsledku anglicky
Systems aiming at discovering interesting knowledge in data, now commonly called data mining systems, are typically employed in finding patterns in a single relational table. Most of mainstream data mining tools are not applicable in the more challengingtask of finding knowledge in structured data represented by a multi-relational database. Although a family of methods known as inductive logic programming have been developed to tackle that challenge by immediate means, the idea of adapting structured data into a simpler form digestible by the wealth of AVL systems has been always tempting to data miners. To this end, we present a method based on constructing first-order logic features that conducts this kind of conversion, also known as propositionalization. It incorporates some basic principles suggested in previous research and provides significant enhancements that lead to remarkable improvements in efficiency of the feature- construction process.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1K04108" target="_blank" >1K04108: Výzkum a implementace metod efektivní propozicionalizace databází</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2004
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Kybernetika
ISSN
0023-5954
e-ISSN
—
Svazek periodika
40
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
18
Strana od-do
275-292
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—