Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dolování sekvenčních dat: srovnávací případová studie vývoje rizikových faktorů aterosklerózy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03136549" target="_blank" >RIV/68407700:21230/08:03136549 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Sequential Data Mining: A Comparative Case Study in Development of Atherosclerosis Risk Factors

  • Popis výsledku v původním jazyce

    Sequential data represent an important source of potentially new medical knowledge. However, this type of data is rarely provided in a format suitable for immediate application of conventional mining algorithms. This paper summarizes and compares three different sequential mining approaches, based respectively on windowing, episode rules and inductive logic programming. Windowing is one of the essential methods of data preprocessing, episode rules represent general sequential mining while inductive logic programming extracts first order features whose structure is determined by background knowledge. The three approaches are demonstrated and evaluated in terms of a case study STULONG. It is a longitudinal preventive study of atherosclerosis where the data consist of series of longterm observations recording the development of risk factors and associated conditions.

  • Název v anglickém jazyce

    Sequential Data Mining: A Comparative Case Study in Development of Atherosclerosis Risk Factors

  • Popis výsledku anglicky

    Sequential data represent an important source of potentially new medical knowledge. However, this type of data is rarely provided in a format suitable for immediate application of conventional mining algorithms. This paper summarizes and compares three different sequential mining approaches, based respectively on windowing, episode rules and inductive logic programming. Windowing is one of the essential methods of data preprocessing, episode rules represent general sequential mining while inductive logic programming extracts first order features whose structure is determined by background knowledge. The three approaches are demonstrated and evaluated in terms of a case study STULONG. It is a longitudinal preventive study of atherosclerosis where the data consist of series of longterm observations recording the development of risk factors and associated conditions.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1ET101210513" target="_blank" >1ET101210513: Relační strojové učení pro průzkum biomedicínských dat</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Systems, Man, and Cybernetics: Part C

  • ISSN

    1094-6977

  • e-ISSN

  • Svazek periodika

    38

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    000251840500002

  • EID výsledku v databázi Scopus