Není k dispozici
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F04%3A03107391" target="_blank" >RIV/68407700:21230/04:03107391 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anachronistic Attributes in Temporal Data: A Case Study
Popis výsledku v původním jazyce
The paper concerns mining data lacking the uniform structure. The data are collected from a number of objects during repeated measurements, all of which are tagged by a corresponding time. No attribute-valued machine learning algorithm can be applied directly on such data since the number of measurements is not fixed but it varies. The available data have to be transformed and preprocessed in such a way that a uniform type of information is obtained about all the considered objects. This can be achieved, e.g., by aggregation. But this process can introduce anachronistic variables, i.e., variables containing information which cannot be available at the moment when a prediction is needed. The paper suggests and tests a method how to preprocess the considered type of data without falling into a trap of introducing anachronistic attributes. The method is illustrated on a case study based on STULONG data.
Název v anglickém jazyce
Anachronistic Attributes in Temporal Data: A Case Study
Popis výsledku anglicky
The paper concerns mining data lacking the uniform structure. The data are collected from a number of objects during repeated measurements, all of which are tagged by a corresponding time. No attribute-valued machine learning algorithm can be applied directly on such data since the number of measurements is not fixed but it varies. The available data have to be transformed and preprocessed in such a way that a uniform type of information is obtained about all the considered objects. This can be achieved, e.g., by aggregation. But this process can introduce anachronistic variables, i.e., variables containing information which cannot be available at the moment when a prediction is needed. The paper suggests and tests a method how to preprocess the considered type of data without falling into a trap of introducing anachronistic attributes. The method is illustrated on a case study based on STULONG data.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2004
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
14
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
14
Strana od-do
421-434
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—