Mining in Hepatitis Data by LISp-Miner and SumatraTT
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F05%3A00115978" target="_blank" >RIV/68407700:21230/05:00115978 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mining in Hepatitis Data by LISp-Miner and SumatraTT
Popis výsledku v původním jazyce
The paper suggests a methodology for search of temporal patterns, which is tested on the problem of difference between hepatitis B and C. To reach this goal two software systems LISp-Miner and SumatraTT are combined -- sophisticated data transformationsand enhancements are designed and ensured through SumatraTT while LISp-Miner takes care for the search of significant interesting differences in the resulting datasets. The main obtained results are reviewed in the section SD4ft-Patterns -- there are identified some examinations the values of which significantly differ for both types of attributes. This proves that the suggested general methodology has promising potential when applied to the considered type of data. A plan for additional data-mining questions to be studied later is presented in the Conclusions.
Název v anglickém jazyce
Mining in Hepatitis Data by LISp-Miner and SumatraTT
Popis výsledku anglicky
The paper suggests a methodology for search of temporal patterns, which is tested on the problem of difference between hepatitis B and C. To reach this goal two software systems LISp-Miner and SumatraTT are combined -- sophisticated data transformationsand enhancements are designed and ensured through SumatraTT while LISp-Miner takes care for the search of significant interesting differences in the resulting datasets. The main obtained results are reviewed in the section SD4ft-Patterns -- there are identified some examinations the values of which significantly differ for both types of attributes. This proves that the suggested general methodology has promising potential when applied to the considered type of data. A plan for additional data-mining questions to be studied later is presented in the Conclusions.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F05%2F0325" target="_blank" >GA201/05/0325: Nové metody a nástroje pro dobývání znalostí z databází</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů