Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Removing Noise from an Imaging Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A00118120" target="_blank" >RIV/68407700:21230/06:00118120 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Removing Noise from an Imaging Data

  • Popis výsledku v původním jazyce

    It is generally known, that the image usually contains a noise, which induces a degradation of image. We have a lot of methods, more or less suitable, for his removing. For the first time we can divide this method like a linear and nonlinear. To linear methods mainly belongs in spatial domain, convolutions filtering and the frequency mask in spectral domain. Nowadays is popular to use Discrete Wavelet Transform (DWT), because this transform is a very good tool for denoising. Two methods will be discussed in this paper using two types of Wavelet Transform. The first of them is based on feasible thresholding (hard or soft) of wavelet coefficients on a suitable decomposition level (see [1]). This method uses Wavelet Transform, which is usually named dyadic decomposition. The second one, more sophisticated, uses special type of Wavelet Transform - the steerable pyramid. The estimation of the image is proceeded using Bayesian least square estimator.

  • Název v anglickém jazyce

    Removing Noise from an Imaging Data

  • Popis výsledku anglicky

    It is generally known, that the image usually contains a noise, which induces a degradation of image. We have a lot of methods, more or less suitable, for his removing. For the first time we can divide this method like a linear and nonlinear. To linear methods mainly belongs in spatial domain, convolutions filtering and the frequency mask in spectral domain. Nowadays is popular to use Discrete Wavelet Transform (DWT), because this transform is a very good tool for denoising. Two methods will be discussed in this paper using two types of Wavelet Transform. The first of them is based on feasible thresholding (hard or soft) of wavelet coefficients on a suitable decomposition level (see [1]). This method uses Wavelet Transform, which is usually named dyadic decomposition. The second one, more sophisticated, uses special type of Wavelet Transform - the steerable pyramid. The estimation of the image is proceeded using Bayesian least square estimator.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JA - Elektronika a optoelektronika, elektrotechnika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA102%2F05%2F2054" target="_blank" >GA102/05/2054: Kvalitativní aspekty zpracování audiovizuální informace v multimediálních systémech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2006

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of Workshop 2006

  • ISBN

    80-01-03439-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    2

  • Strana od-do

  • Název nakladatele

    ČVUT

  • Místo vydání

    Praha

  • Místo konání akce

    Praha

  • Datum konání akce

    20. 2. 2006

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku