Removing Noise from an Imaging Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A00118120" target="_blank" >RIV/68407700:21230/06:00118120 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Removing Noise from an Imaging Data
Popis výsledku v původním jazyce
It is generally known, that the image usually contains a noise, which induces a degradation of image. We have a lot of methods, more or less suitable, for his removing. For the first time we can divide this method like a linear and nonlinear. To linear methods mainly belongs in spatial domain, convolutions filtering and the frequency mask in spectral domain. Nowadays is popular to use Discrete Wavelet Transform (DWT), because this transform is a very good tool for denoising. Two methods will be discussed in this paper using two types of Wavelet Transform. The first of them is based on feasible thresholding (hard or soft) of wavelet coefficients on a suitable decomposition level (see [1]). This method uses Wavelet Transform, which is usually named dyadic decomposition. The second one, more sophisticated, uses special type of Wavelet Transform - the steerable pyramid. The estimation of the image is proceeded using Bayesian least square estimator.
Název v anglickém jazyce
Removing Noise from an Imaging Data
Popis výsledku anglicky
It is generally known, that the image usually contains a noise, which induces a degradation of image. We have a lot of methods, more or less suitable, for his removing. For the first time we can divide this method like a linear and nonlinear. To linear methods mainly belongs in spatial domain, convolutions filtering and the frequency mask in spectral domain. Nowadays is popular to use Discrete Wavelet Transform (DWT), because this transform is a very good tool for denoising. Two methods will be discussed in this paper using two types of Wavelet Transform. The first of them is based on feasible thresholding (hard or soft) of wavelet coefficients on a suitable decomposition level (see [1]). This method uses Wavelet Transform, which is usually named dyadic decomposition. The second one, more sophisticated, uses special type of Wavelet Transform - the steerable pyramid. The estimation of the image is proceeded using Bayesian least square estimator.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F05%2F2054" target="_blank" >GA102/05/2054: Kvalitativní aspekty zpracování audiovizuální informace v multimediálních systémech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of Workshop 2006
ISBN
80-01-03439-9
ISSN
—
e-ISSN
—
Počet stran výsledku
2
Strana od-do
—
Název nakladatele
ČVUT
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
20. 2. 2006
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—