Není k dispozici
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A03119471" target="_blank" >RIV/68407700:21230/06:03119471 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Recursive Subspace Identification in the Least Squares Framework
Popis výsledku v původním jazyce
In the recent years Subspace identification methods proved to be efficient for industrial applications, due to their good properties, such as: same complexity of identification for single input/output and multiple input/output systems, direct state spacemodel identification, numerical robustness (QR and SVD factorization) and implicit model order reduction. The algorithms are well developed for off-line identification, however on-line recursive identification is still rather an open topic. The problemlies in the recursification of SVD, which is impossible and several approximations are used instead. We use a different approach, exploiting the fact, that 4SID methods minimizes implicit optimality criterion, which is mean square error of multi-step predictions of the model. The criterion allows for recursification in the least squares framework and prior knowledge incorporation. We also address the problem of non-causality, which was recently pointed out in 4SID methods.
Název v anglickém jazyce
Recursive Subspace Identification in the Least Squares Framework
Popis výsledku anglicky
In the recent years Subspace identification methods proved to be efficient for industrial applications, due to their good properties, such as: same complexity of identification for single input/output and multiple input/output systems, direct state spacemodel identification, numerical robustness (QR and SVD factorization) and implicit model order reduction. The algorithms are well developed for off-line identification, however on-line recursive identification is still rather an open topic. The problemlies in the recursification of SVD, which is impossible and several approximations are used instead. We use a different approach, exploiting the fact, that 4SID methods minimizes implicit optimality criterion, which is mean square error of multi-step predictions of the model. The criterion allows for recursification in the least squares framework and prior knowledge incorporation. We also address the problem of non-causality, which was recently pointed out in 4SID methods.
Klasifikace
Druh
A - Audiovizuální tvorba
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F05%2F0271" target="_blank" >GA102/05/0271: Metody prediktivního řízení: algoritmy a implementace</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
—
Místo vydání
Praha
Název nakladatele resp. objednatele
—
Verze
—
Identifikační číslo nosiče
neuvedeno