Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Novel Algorithm for Learning Support Vector Machines with Structured Output Spaces

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F06%3A03124618" target="_blank" >RIV/68407700:21230/06:03124618 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Novel Algorithm for Learning Support Vector Machines with Structured Output Spaces

  • Popis výsledku v původním jazyce

    This report proposes a novel optimization algorithm for learning support vector machines (SVM) classifiers with structured output spaces introduced recently by Tsochantaridis et. al. Learning structural SVM classifier leads to a special instance of quadratic programming (QP) optimization with a huge number of constraints. The number of constraints is proportional to the cardinality of the output space which makes the QP task intractable by classical optimization methods. We propose a novel QP solver based on sequential minimal optimization (SMO). Unlike the original SMO, we propose a novel strategy for selecting variables to be optimized. The strategy aims at selecting such variables which yield the maximal improvement of optimization. We prove that the algorithm converges in a finite number of iterations to the solution which differs from the optimal one at most by a prescribed constant.

  • Název v anglickém jazyce

    A Novel Algorithm for Learning Support Vector Machines with Structured Output Spaces

  • Popis výsledku anglicky

    This report proposes a novel optimization algorithm for learning support vector machines (SVM) classifiers with structured output spaces introduced recently by Tsochantaridis et. al. Learning structural SVM classifier leads to a special instance of quadratic programming (QP) optimization with a huge number of constraints. The number of constraints is proportional to the cardinality of the output space which makes the QP task intractable by classical optimization methods. We propose a novel QP solver based on sequential minimal optimization (SMO). Unlike the original SMO, we propose a novel strategy for selecting variables to be optimized. The strategy aims at selecting such variables which yield the maximal improvement of optimization. We prove that the algorithm converges in a finite number of iterations to the solution which differs from the optimal one at most by a prescribed constant.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0567" target="_blank" >1M0567: Centrum aplikované kybernetiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2006

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů