Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Subspace Identification Incorporating Prior Information

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F07%3A00133872" target="_blank" >RIV/68407700:21230/07:00133872 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Subspace Identification Incorporating Prior Information

  • Popis výsledku v původním jazyce

    Subspace identification methods proved to be a powerful tool, which can further benefit from the incorporation of prior information. In the industrial environment, there is often strong prior information about the identified system, that can be used to improve the model quality and its compliance with physical reality. Such prior information can be the known static gains, the dominant time constants, the impulse response smoothness, etc. An idea comes from the possibility to consider the subspace identification as an optimization problem of finding a model with the optimal multi-step predictions on the experimental data. Further, the problem is reformulated to the Bayesian framework allowing to combine available prior information with the information contained in the experimental data by covariance matrix shaping. The paper is completed with an application to experimental data from an oil firing steam boiler with the rated effective power of 100 MW.

  • Název v anglickém jazyce

    Subspace Identification Incorporating Prior Information

  • Popis výsledku anglicky

    Subspace identification methods proved to be a powerful tool, which can further benefit from the incorporation of prior information. In the industrial environment, there is often strong prior information about the identified system, that can be used to improve the model quality and its compliance with physical reality. Such prior information can be the known static gains, the dominant time constants, the impulse response smoothness, etc. An idea comes from the possibility to consider the subspace identification as an optimization problem of finding a model with the optimal multi-step predictions on the experimental data. Further, the problem is reformulated to the Bayesian framework allowing to combine available prior information with the information contained in the experimental data by covariance matrix shaping. The paper is completed with an application to experimental data from an oil firing steam boiler with the rated effective power of 100 MW.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BC - Teorie a systémy řízení

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA102%2F05%2F2075" target="_blank" >GA102/05/2075: Teoretické základy pro integrované řízení a optimalizaci technologických procesů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2007

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    46th IEEE Conference on Decision and Control (CDC), 2007

  • ISBN

    978-1-4244-1497-0

  • ISSN

    0191-2216

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

  • Název nakladatele

    IEEE

  • Místo vydání

    Piscataway

  • Místo konání akce

    New Orleans, Louisiana

  • Datum konání akce

    12. 12. 2007

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000255181700233