Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Parallel Image Reconstruction Using B-Spline Approximation (PROBER)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F07%3A03134422" target="_blank" >RIV/68407700:21230/07:03134422 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Parallel Image Reconstruction Using B-Spline Approximation (PROBER)

  • Popis výsledku v původním jazyce

    Parallel MRI (pMRI) is a way to increase the speed of the MRI acquisition by com bining data obtained simultaneously from several receiver coils with distinct sp atial sensitivities. We propose an algorithm th at uses B-spline functions to approximate the reconstruction map which reduces t he number of parameters to estimate and makes the reconstruction faster and less sensitive to noise. The proposed method is tested on both phantom and in vivo images. The results ar e compared with commercial implementation of GRAPPA and SENSE algorithms in term s of time complexity and quality of the reconstruction.

  • Název v anglickém jazyce

    Parallel Image Reconstruction Using B-Spline Approximation (PROBER)

  • Popis výsledku anglicky

    Parallel MRI (pMRI) is a way to increase the speed of the MRI acquisition by com bining data obtained simultaneously from several receiver coils with distinct sp atial sensitivities. We propose an algorithm th at uses B-spline functions to approximate the reconstruction map which reduces t he number of parameters to estimate and makes the reconstruction faster and less sensitive to noise. The proposed method is tested on both phantom and in vivo images. The results ar e compared with commercial implementation of GRAPPA and SENSE algorithms in term s of time complexity and quality of the reconstruction.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1ET101050403" target="_blank" >1ET101050403: Metody umělé inteligence v diagnostice z medicínských obrazů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2007

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Magnetic Resonance in Medicine

  • ISSN

    0740-3194

  • e-ISSN

  • Svazek periodika

    58

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    582-591

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus