Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Temporal Hebbian Self-Organizing Map for Sequences

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A00145486" target="_blank" >RIV/68407700:21230/08:00145486 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Temporal Hebbian Self-Organizing Map for Sequences

  • Popis výsledku v původním jazyce

    In this paper we present a new self-organizing neural network called Temporal Hebbian Self-organizing Map (THSOM) suitable for modelling of temporal sequences. The network is based on Kohonen's Self-organizing Map, which is extended with a layer of fullrecurrent connections among the neurons. The layer of recurrent connections is trained with Hebb's rule. The recurrent layer represents temporal order of the input vectors. The THSOM brings a straightforward way of embedding context information in recurrent SOM using neurons with Euclidean metric and scalar product. The recurrent layer can be easily converted into a stochastic automaton (Markov Chain) generating sequences used for previous THSOM training. Finally, two real world examples of THSOM usageare presented. THSOM was applied to extraction of road network from GPS data and to construction of spatio-temporal models of spike train sequences measured in human brain in vivo.

  • Název v anglickém jazyce

    Temporal Hebbian Self-Organizing Map for Sequences

  • Popis výsledku anglicky

    In this paper we present a new self-organizing neural network called Temporal Hebbian Self-organizing Map (THSOM) suitable for modelling of temporal sequences. The network is based on Kohonen's Self-organizing Map, which is extended with a layer of fullrecurrent connections among the neurons. The layer of recurrent connections is trained with Hebb's rule. The recurrent layer represents temporal order of the input vectors. The THSOM brings a straightforward way of embedding context information in recurrent SOM using neurons with Euclidean metric and scalar product. The recurrent layer can be easily converted into a stochastic automaton (Markov Chain) generating sequences used for previous THSOM training. Finally, two real world examples of THSOM usageare presented. THSOM was applied to extraction of road network from GPS data and to construction of spatio-temporal models of spike train sequences measured in human brain in vivo.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Artificial Neural Networks - ICANN 2008, PT I

  • ISBN

    978-3-540-87535-2

  • ISSN

    0302-9743

  • e-ISSN

  • Počet stran výsledku

    10

  • Strana od-do

  • Název nakladatele

    Springer

  • Místo vydání

    Heidelberg

  • Místo konání akce

    Prague

  • Datum konání akce

    3. 9. 2008

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku

    000259566200065