Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Využití omezení při získávání znalostí ze SAGE dat

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03141950" target="_blank" >RIV/68407700:21230/08:03141950 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Constraint-based knowledge discovery from SAGE data

  • Popis výsledku v původním jazyce

    Current analyses of co-expressed genes are often based on global approaches such as clustering or bi-clustering. An alternative way is to employ local methods and search for patterns - sets of genes displaying specific expression properties in a set of situations. The main bottleneck of this type of analysis is twofold - computational costs and an overwhelming number of candidate patterns which can hardly be further exploited. A timely application of background knowledge available in literature databases, biological ontologies and other sources can help to focus on the most plausible patterns only. The paper proposes, implements and tests a flexible constraint-based framework that enables the effective mining and representation of meaningful over-expression patterns representing intrinsic associations among genes and biological situations.

  • Název v anglickém jazyce

    Constraint-based knowledge discovery from SAGE data

  • Popis výsledku anglicky

    Current analyses of co-expressed genes are often based on global approaches such as clustering or bi-clustering. An alternative way is to employ local methods and search for patterns - sets of genes displaying specific expression properties in a set of situations. The main bottleneck of this type of analysis is twofold - computational costs and an overwhelming number of candidate patterns which can hardly be further exploited. A timely application of background knowledge available in literature databases, biological ontologies and other sources can help to focus on the most plausible patterns only. The paper proposes, implements and tests a flexible constraint-based framework that enables the effective mining and representation of meaningful over-expression patterns representing intrinsic associations among genes and biological situations.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JC - Počítačový hardware a software

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/MEB020818" target="_blank" >MEB020818: Fúze heterogenních dat pro dolování genomických a proteomických znalostí</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    In Silico Biology - An International Journal on Computational Molecular Biology

  • ISSN

    1434-3207

  • e-ISSN

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    19

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus