Reducing false positive responses in lung nodule detector system by asymmetric AdaBoost
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03144356" target="_blank" >RIV/68407700:21230/08:03144356 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reducing false positive responses in lung nodule detector system by asymmetric AdaBoost
Popis výsledku v původním jazyce
We are developing a complex computer aided diagnosis (CAD) system to detect small pulmonary nodules from helical CT scans. Here we present a classifier to reduce the number of false positive responses of the primary detector. Our approach is based on anasymmetric Adaboost which enables us to give different weights to missed nodules (false negatives, FNs) and incorrectly detected structures (false positives, FPs). This is useful because there are noticeably more negative examples in the nodule candidateset than real nodules-true positives (TPs). The whole system is meant as a second opinion for a human radiologist to speed up reading the examination. That is why we should detect as many true nodules as possible, while a certain number of FPs is acceptable. The system was tested on 147 cases (36559 slices) containing 357 nodules marked by an expert radiologist. The new classifier significantly reduced the number of false positives, while only a few nodules were incorrectly omitted.
Název v anglickém jazyce
Reducing false positive responses in lung nodule detector system by asymmetric AdaBoost
Popis výsledku anglicky
We are developing a complex computer aided diagnosis (CAD) system to detect small pulmonary nodules from helical CT scans. Here we present a classifier to reduce the number of false positive responses of the primary detector. Our approach is based on anasymmetric Adaboost which enables us to give different weights to missed nodules (false negatives, FNs) and incorrectly detected structures (false positives, FPs). This is useful because there are noticeably more negative examples in the nodule candidateset than real nodules-true positives (TPs). The whole system is meant as a second opinion for a human radiologist to speed up reading the examination. That is why we should detect as many true nodules as possible, while a certain number of FPs is acceptable. The system was tested on 147 cases (36559 slices) containing 357 nodules marked by an expert radiologist. The new classifier significantly reduced the number of false positives, while only a few nodules were incorrectly omitted.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of 2008 IEEE International Symposium on Biomedical Imaging: From Nano to Macro
ISBN
978-1-4244-2002-5
ISSN
1945-7928
e-ISSN
—
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Paris
Datum konání akce
14. 5. 2008
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000258259800165