Efficient MRF Deformation Model for Non-Rigid Image Matching
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03150820" target="_blank" >RIV/68407700:21230/08:03150820 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient MRF Deformation Model for Non-Rigid Image Matching
Popis výsledku v původním jazyce
We propose a novel MRF-based model for deformable image matching (also known as registration). The deformation is described by a field of discrete variables, representing displacements of (blocks of) pixels. Discontinuities in the deformation are prohibited by imposing hard pairwise constraints in the model. Exact maximum a posteriori inference is intractable and we apply a linear programming relaxation technique. We show that, when reformulated in the form of two coupled fields of x- and y- displacements, the problem leads to a simpler relaxation to which we apply the TRW-S (Sequential Tree-Reweighted Message passing) algorithm [Wainwright-03, Kolmogorov-05]. This enables image registration with large displacements at a single scale. We employ fast message updates for a special type of interaction as was proposed [Felzenszwalb and Huttenlocher-04] for the max-product Belief Propagation (BP) and introduce a few independent speedups. In contrast to BP, the TRW-S allows us to compute per
Název v anglickém jazyce
Efficient MRF Deformation Model for Non-Rigid Image Matching
Popis výsledku anglicky
We propose a novel MRF-based model for deformable image matching (also known as registration). The deformation is described by a field of discrete variables, representing displacements of (blocks of) pixels. Discontinuities in the deformation are prohibited by imposing hard pairwise constraints in the model. Exact maximum a posteriori inference is intractable and we apply a linear programming relaxation technique. We show that, when reformulated in the form of two coupled fields of x- and y- displacements, the problem leads to a simpler relaxation to which we apply the TRW-S (Sequential Tree-Reweighted Message passing) algorithm [Wainwright-03, Kolmogorov-05]. This enables image registration with large displacements at a single scale. We employ fast message updates for a special type of interaction as was proposed [Felzenszwalb and Huttenlocher-04] for the max-product Belief Propagation (BP) and introduce a few independent speedups. In contrast to BP, the TRW-S allows us to compute per
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7E08031" target="_blank" >7E08031: Dynamic Interactive Perception-action Learning in Cognitive Systems</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Vision and Image Understanding
ISSN
1077-3142
e-ISSN
—
Svazek periodika
112
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
000260090900009
EID výsledku v databázi Scopus
—