Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Training Sequential On-line Boosting Classifier for Visual Tracking

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03150842" target="_blank" >RIV/68407700:21230/08:03150842 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Training Sequential On-line Boosting Classifier for Visual Tracking

  • Popis výsledku v původním jazyce

    On-line boosting allows to adapt a trained classifier to changing environmental conditions or to use sequentially available training data. Yet, two important problems in the on-line boosting training remain unsolved: (i) classifier evaluation speed optimization and, (ii) automatic classifier complexity estimation. In this paper we show how the on-line boosting can be combined with Wald's sequential decision theory to solve both of the problems.The properties of the proposed on-lineWaldBoost algorithm are demonstrated on a visual tracking problem. The complexity of the classifier is changing dynamically depending on the difficulty of the problem. On average, a speedup of a factor of 5-10 is achieved compared to the non-sequential on-line boosting.

  • Název v anglickém jazyce

    Training Sequential On-line Boosting Classifier for Visual Tracking

  • Popis výsledku anglicky

    On-line boosting allows to adapt a trained classifier to changing environmental conditions or to use sequentially available training data. Yet, two important problems in the on-line boosting training remain unsolved: (i) classifier evaluation speed optimization and, (ii) automatic classifier complexity estimation. In this paper we show how the on-line boosting can be combined with Wald's sequential decision theory to solve both of the problems.The properties of the proposed on-lineWaldBoost algorithm are demonstrated on a visual tracking problem. The complexity of the classifier is changing dynamically depending on the difficulty of the problem. On average, a speedup of a factor of 5-10 is achieved compared to the non-sequential on-line boosting.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA102%2F07%2F1317" target="_blank" >GA102/07/1317: Metody pro vizuální rozpoznávání velkých souborů elastických objektů</a><br>

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2008

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    ICPR 2008: Proceedings of the 19th International Conference on Pattern Recognition

  • ISBN

    978-1-4244-2174-9

  • ISSN

    1051-4651

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

  • Název nakladatele

    Omnipress

  • Místo vydání

    Madison

  • Místo konání akce

    Tampa, Florida

  • Datum konání akce

    8. 12. 2008

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000264729000334