Training Sequential On-line Boosting Classifier for Visual Tracking
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03150842" target="_blank" >RIV/68407700:21230/08:03150842 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Training Sequential On-line Boosting Classifier for Visual Tracking
Popis výsledku v původním jazyce
On-line boosting allows to adapt a trained classifier to changing environmental conditions or to use sequentially available training data. Yet, two important problems in the on-line boosting training remain unsolved: (i) classifier evaluation speed optimization and, (ii) automatic classifier complexity estimation. In this paper we show how the on-line boosting can be combined with Wald's sequential decision theory to solve both of the problems.The properties of the proposed on-lineWaldBoost algorithm are demonstrated on a visual tracking problem. The complexity of the classifier is changing dynamically depending on the difficulty of the problem. On average, a speedup of a factor of 5-10 is achieved compared to the non-sequential on-line boosting.
Název v anglickém jazyce
Training Sequential On-line Boosting Classifier for Visual Tracking
Popis výsledku anglicky
On-line boosting allows to adapt a trained classifier to changing environmental conditions or to use sequentially available training data. Yet, two important problems in the on-line boosting training remain unsolved: (i) classifier evaluation speed optimization and, (ii) automatic classifier complexity estimation. In this paper we show how the on-line boosting can be combined with Wald's sequential decision theory to solve both of the problems.The properties of the proposed on-lineWaldBoost algorithm are demonstrated on a visual tracking problem. The complexity of the classifier is changing dynamically depending on the difficulty of the problem. On average, a speedup of a factor of 5-10 is achieved compared to the non-sequential on-line boosting.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F07%2F1317" target="_blank" >GA102/07/1317: Metody pro vizuální rozpoznávání velkých souborů elastických objektů</a><br>
Návaznosti
R - Projekt Ramcoveho programu EK
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
ICPR 2008: Proceedings of the 19th International Conference on Pattern Recognition
ISBN
978-1-4244-2174-9
ISSN
1051-4651
e-ISSN
—
Počet stran výsledku
4
Strana od-do
—
Název nakladatele
Omnipress
Místo vydání
Madison
Místo konání akce
Tampa, Florida
Datum konání akce
8. 12. 2008
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000264729000334