Využití metod inspirovaných přírodou v procesu učení sítí RBF
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F08%3A03151584" target="_blank" >RIV/68407700:21230/08:03151584 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nature Inspired Methods in the Radial Basis Function Network Learning Process
Popis výsledku v původním jazyce
In present we benefit from the use of nature processes which provide us with highly effective heuristics for solving various problems. Their advantages are mainly prominent in hybrid approach. This paper evaluates several approaches for learning neural network based on Radial Basis Function (RBF) for distinguishing different sets in R^L. RBF networks use one layer of hidden RBF units and the number of RBF units is kept constatnt. In the paper we evaluate the ACO_R (Ant Colony Approach for Real domain) approach inspired by ant behavior and the PSO (Particle Swarm Optimization) algorithm inspired by behavior of flock of birds or fish in the nature. Nature inspired and classical algorithms are compared and evaluated.
Název v anglickém jazyce
Nature Inspired Methods in the Radial Basis Function Network Learning Process
Popis výsledku anglicky
In present we benefit from the use of nature processes which provide us with highly effective heuristics for solving various problems. Their advantages are mainly prominent in hybrid approach. This paper evaluates several approaches for learning neural network based on Radial Basis Function (RBF) for distinguishing different sets in R^L. RBF networks use one layer of hidden RBF units and the number of RBF units is kept constatnt. In the paper we evaluate the ACO_R (Ant Colony Approach for Real domain) approach inspired by ant behavior and the PSO (Particle Swarm Optimization) algorithm inspired by behavior of flock of birds or fish in the nature. Nature inspired and classical algorithms are compared and evaluated.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Artificial Neural Networks - ICANN 2008
ISBN
978-3-540-87558-1
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
10
Strana od-do
—
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Prague
Datum konání akce
3. 9. 2008
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000259567200086