Spatial Extension of the Reality Mining Dataset
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00172398" target="_blank" >RIV/68407700:21230/10:00172398 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spatial Extension of the Reality Mining Dataset
Popis výsledku v původním jazyce
Data captured from a live cellular network with the real users during their common daily routine help to understand how the users move within the network. Unlike the simulations with limited potential or expensive experimental studies, the research in user-mobility or spatio-temporal user behavior can be conducted on publicly available datasets such as the Reality Mining Dataset. These data have been for many years a source of valuable information about social interconnection between users and user-network associations. However, an important, spatial dimension is missing in this dataset. In this paper, we present a methodology for retrieving geographical locations matching the GSM cell identifiers in the Reality Mining Dataset, an approach base on querying the Google Location API. A statistical analysis of the measure of success of locations retrieval is provided. Further, we present the LAC-clustering method for detecting and removing outliers.
Název v anglickém jazyce
Spatial Extension of the Reality Mining Dataset
Popis výsledku anglicky
Data captured from a live cellular network with the real users during their common daily routine help to understand how the users move within the network. Unlike the simulations with limited potential or expensive experimental studies, the research in user-mobility or spatio-temporal user behavior can be conducted on publicly available datasets such as the Reality Mining Dataset. These data have been for many years a source of valuable information about social interconnection between users and user-network associations. However, an important, spatial dimension is missing in this dataset. In this paper, we present a methodology for retrieving geographical locations matching the GSM cell identifiers in the Reality Mining Dataset, an approach base on querying the Google Location API. A statistical analysis of the measure of success of locations retrieval is provided. Further, we present the LAC-clustering method for detecting and removing outliers.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 7th IEEE International Conference on Mobile Ad-hoc and Sensor Systems
ISBN
978-1-4244-7489-9
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Místo vydání
New York
Místo konání akce
San Francisco, CA
Datum konání akce
8. 11. 2010
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—