Hermite matrix in Lagrange basis for scaling static output feedback polynomial matrix inequalities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00172903" target="_blank" >RIV/68407700:21230/10:00172903 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hermite matrix in Lagrange basis for scaling static output feedback polynomial matrix inequalities
Popis výsledku v původním jazyce
Using Hermite's formulation of polynomial stability conditions, static output feedback (SOF) controller design can be formulated as a polynomial matrix inequality (PMI), a (generally nonconvex) nonlinear semidefinite programming problem that can be solved (locally) with PENNON, an implementation of a penalty and augmented Lagrangian method. Typically, Hermite SOF PMI problems are badly scaled and experiments reveal that this has a negative impact on the overall performance of the solver. In this note werecall the algebraic interpretation of Hermite's quadratic form as a particular Be´zoutian and we use results on polynomial interpolation to express the Hermite PMI in a Lagrange polynomial basis, as an alternative to the conventional power basis. Numerical experiments on benchmark problem instances show the improvement brought by the approach, in terms of problem scaling, number of iterations and convergence behaviour of PENNON.
Název v anglickém jazyce
Hermite matrix in Lagrange basis for scaling static output feedback polynomial matrix inequalities
Popis výsledku anglicky
Using Hermite's formulation of polynomial stability conditions, static output feedback (SOF) controller design can be formulated as a polynomial matrix inequality (PMI), a (generally nonconvex) nonlinear semidefinite programming problem that can be solved (locally) with PENNON, an implementation of a penalty and augmented Lagrangian method. Typically, Hermite SOF PMI problems are badly scaled and experiments reveal that this has a negative impact on the overall performance of the solver. In this note werecall the algebraic interpretation of Hermite's quadratic form as a particular Be´zoutian and we use results on polynomial interpolation to express the Hermite PMI in a Lagrange polynomial basis, as an alternative to the conventional power basis. Numerical experiments on benchmark problem instances show the improvement brought by the approach, in terms of problem scaling, number of iterations and convergence behaviour of PENNON.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP103%2F10%2F0628" target="_blank" >GAP103/10/0628: Semidefinitní programování po nelineární dynamické systémy</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Control
ISSN
0020-7179
e-ISSN
—
Svazek periodika
83
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000285354700008
EID výsledku v databázi Scopus
—