Finding largest small polygons with GloptiPoly
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F10%3A00185281" target="_blank" >RIV/68407700:21230/10:00185281 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finding largest small polygons with GloptiPoly
Popis výsledku v původním jazyce
A small polygon is a convex polygon of unit diameter. We are interested in small polygons which have the largest area for a given number of vertices n. Many instances are already solved in the lit- erature, namely for all odd n, and for n = 4; 6 and 8. Thus, for even n 10, instances of this problem remain open. Finding those largest small polygons can be formulated as nonconvex quadratic pro- gramming problems which can challenge state-of-the-art global opti- mization algorithms. We show that a recentlydeveloped technique for global polynomial optimization, based on a semideFinite programming approach to the generalized problem of moments and implemented in the public-domain Matlab package GloptiPoly, can successfully Find largest small polygons for n= 10 and n = 12. Therefore this signif- icantly improves existing results in the domain.
Název v anglickém jazyce
Finding largest small polygons with GloptiPoly
Popis výsledku anglicky
A small polygon is a convex polygon of unit diameter. We are interested in small polygons which have the largest area for a given number of vertices n. Many instances are already solved in the lit- erature, namely for all odd n, and for n = 4; 6 and 8. Thus, for even n 10, instances of this problem remain open. Finding those largest small polygons can be formulated as nonconvex quadratic pro- gramming problems which can challenge state-of-the-art global opti- mization algorithms. We show that a recentlydeveloped technique for global polynomial optimization, based on a semideFinite programming approach to the generalized problem of moments and implemented in the public-domain Matlab package GloptiPoly, can successfully Find largest small polygons for n= 10 and n = 12. Therefore this signif- icantly improves existing results in the domain.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
BC - Teorie a systémy řízení
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP103%2F10%2F0628" target="_blank" >GAP103/10/0628: Semidefinitní programování po nelineární dynamické systémy</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů