How to Compute Primal Solution from Dual One in MAP Inference in MRF?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F11%3A00187153" target="_blank" >RIV/68407700:21230/11:00187153 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How to Compute Primal Solution from Dual One in MAP Inference in MRF?
Popis výsledku v původním jazyce
In LP relaxation of MAP inference in Markov random fields (MRF), the primal LP maximizes the MAP objective over relaxed labelings (pseudomarginals) and the dual LP minimizes an upper bound on the true MAP solution by reparameterizations. Having solved the dual~LP, we have no direct access to the corresponding primal solution. We propose a simple way to compute an optimal primal solution from an optimal dual solution. Precisely, we given an algorithm that either shows that the upper bound for a given problem can be further decreased by reparameterizations (i.e., it is not dual-optimal) or computes the corresponding optimal relaxed labeling. This is done by first removing inactive dual constraints and then solving the resulting feasibility problem by a very simple message-passing algorithm, sum-product diffusion.
Název v anglickém jazyce
How to Compute Primal Solution from Dual One in MAP Inference in MRF?
Popis výsledku anglicky
In LP relaxation of MAP inference in Markov random fields (MRF), the primal LP maximizes the MAP objective over relaxed labelings (pseudomarginals) and the dual LP minimizes an upper bound on the true MAP solution by reparameterizations. Having solved the dual~LP, we have no direct access to the corresponding primal solution. We propose a simple way to compute an optimal primal solution from an optimal dual solution. Precisely, we given an algorithm that either shows that the upper bound for a given problem can be further decreased by reparameterizations (i.e., it is not dual-optimal) or computes the corresponding optimal relaxed labeling. This is done by first removing inactive dual constraints and then solving the resulting feasibility problem by a very simple message-passing algorithm, sum-product diffusion.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Control Systems and Computers
ISSN
0130-5395
e-ISSN
—
Svazek periodika
2011
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
UA - Ukrajina
Počet stran výsledku
8
Strana od-do
86-93
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—