Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Solving LP Relaxations of Some NP-Hard Problems Is As Hard As Solving Any Linear Program

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F19%3A00332584" target="_blank" >RIV/68407700:21230/19:00332584 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1137/17M1142922" target="_blank" >https://doi.org/10.1137/17M1142922</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/17M1142922" target="_blank" >10.1137/17M1142922</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Solving LP Relaxations of Some NP-Hard Problems Is As Hard As Solving Any Linear Program

  • Popis výsledku v původním jazyce

    We show that the general linear programming (LP) problem reduces in nearly linear time to the LP relaxations of many classical NP-hard combinatorial problems, assuming sparse encoding of instances. We distinguish two types of such reductions. In the first type (shown for set cover/packing, facility location, maximum satisfiability, maximum independent set, and multiway cut), the input linear program is feasible and bounded iff the optimum value of the LP relaxation attains a threshold, and then optimal solutions to the input linear program correspond to optimal solutions to the LP relaxation. In the second type (shown for exact set cover, three-dimensional matching, and constraint satisfaction), feasible solutions to the input linear program correspond to feasible solutions to the LP relaxations. Thus, the reduction preserves objective values of all (not only optimal) solutions. In polyhedral terms, every polytope in standard form is a scaled coordinate projection of the optimal or feasible set of the LP relaxation. Besides nearly linear-time reductions, we show that the considered LP relaxations are P-complete under log-space reductions, and therefore also hard to parallelize. These results pose a limitation on designing algorithms to compute exact or even approximate solutions to the LP relaxations, as any lower bound on the complexity of solving the general LP problem is inherited by the LP relaxations.

  • Název v anglickém jazyce

    Solving LP Relaxations of Some NP-Hard Problems Is As Hard As Solving Any Linear Program

  • Popis výsledku anglicky

    We show that the general linear programming (LP) problem reduces in nearly linear time to the LP relaxations of many classical NP-hard combinatorial problems, assuming sparse encoding of instances. We distinguish two types of such reductions. In the first type (shown for set cover/packing, facility location, maximum satisfiability, maximum independent set, and multiway cut), the input linear program is feasible and bounded iff the optimum value of the LP relaxation attains a threshold, and then optimal solutions to the input linear program correspond to optimal solutions to the LP relaxation. In the second type (shown for exact set cover, three-dimensional matching, and constraint satisfaction), feasible solutions to the input linear program correspond to feasible solutions to the LP relaxations. Thus, the reduction preserves objective values of all (not only optimal) solutions. In polyhedral terms, every polytope in standard form is a scaled coordinate projection of the optimal or feasible set of the LP relaxation. Besides nearly linear-time reductions, we show that the considered LP relaxations are P-complete under log-space reductions, and therefore also hard to parallelize. These results pose a limitation on designing algorithms to compute exact or even approximate solutions to the LP relaxations, as any lower bound on the complexity of solving the general LP problem is inherited by the LP relaxations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM JOURNAL ON OPTIMIZATION

  • ISSN

    1052-6234

  • e-ISSN

    1095-7189

  • Svazek periodika

    29

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    27

  • Strana od-do

    1745-1771

  • Kód UT WoS článku

    000487929500001

  • EID výsledku v databázi Scopus

    2-s2.0-85073702277