Precise Characterization of Memristive Systems by Cooperative Artificial Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00198153" target="_blank" >RIV/68407700:21230/12:00198153 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/SCIS-ISIS.2012.6505343" target="_blank" >http://dx.doi.org/10.1109/SCIS-ISIS.2012.6505343</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/SCIS-ISIS.2012.6505343" target="_blank" >10.1109/SCIS-ISIS.2012.6505343</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Precise Characterization of Memristive Systems by Cooperative Artificial Neural Networks
Popis výsledku v původním jazyce
Nowadays, there are many emerging electronic structures for which their nonlinear models for CAD are necessary, especially for the ones from the area of nanoelectronics. However, for such structures, sufficiently accurate analytic models are mostly unavailable. This is partially caused by the fact that the physical principles of the element operation are sometimes not fully clear (especially for quantum devices), and also by bizarre characteristics of some elements (typically with irregularities and a hysteresis in parts of characteristics). In such cases, models based on artificial neural networks are necessary and useful for these elements. Majority of the elements can be characterized with a single artificial neural network. However, for certain kinds of elements, a cooperation of more artificial networks is necessary. This case is described in the paper, where the Pt - TiO_(2-x) - Pt memristor characteristic with an extraordinary (but typical) hysteresis is approximated by a set of
Název v anglickém jazyce
Precise Characterization of Memristive Systems by Cooperative Artificial Neural Networks
Popis výsledku anglicky
Nowadays, there are many emerging electronic structures for which their nonlinear models for CAD are necessary, especially for the ones from the area of nanoelectronics. However, for such structures, sufficiently accurate analytic models are mostly unavailable. This is partially caused by the fact that the physical principles of the element operation are sometimes not fully clear (especially for quantum devices), and also by bizarre characteristics of some elements (typically with irregularities and a hysteresis in parts of characteristics). In such cases, models based on artificial neural networks are necessary and useful for these elements. Majority of the elements can be characterized with a single artificial neural network. However, for certain kinds of elements, a cooperation of more artificial networks is necessary. This case is described in the paper, where the Pt - TiO_(2-x) - Pt memristor characteristic with an extraordinary (but typical) hysteresis is approximated by a set of
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP102%2F10%2F1614" target="_blank" >GAP102/10/1614: Memristivní, memkapacitivní a meminduktivní systémy: základní výzkum, modelování a simulace</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The 6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium on Advanced Intelligent Systems
ISBN
978-1-4673-2742-8
ISSN
1880-3741
e-ISSN
—
Počet stran výsledku
4
Strana od-do
2130-2133
Název nakladatele
IEEE
Místo vydání
Piscataway
Místo konání akce
Kobe
Datum konání akce
20. 11. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—