Neuromuscular fiber segmentation using particle filtering and discrete optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F12%3A00200726" target="_blank" >RIV/68407700:21230/12:00200726 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neuromuscular fiber segmentation using particle filtering and discrete optimization
Popis výsledku v původním jazyce
'We present an algorithm to segment a set of parallel, intertwined and bifurcating fibers from 3D images, targeted for identification of neuronal fibers in very large sets of 3D confocal microscopy images. The method consists of preprocessing, local calculation of fiber probabilities, seed detection, local tracking by particle filtering, global supervised seed clustering, and final voxel segmentation. The preprocessing uses a novel random local probability filtering segmentation. The global segmentationis solved by discrete optimization. The combination of global and local approaches makes the segmentation robust, yet the individual data blocks can be processed sequentially, limiting memory consumption. The method is automatic but efficient manual interaction is possible if needed. Initial promising results on a neuromuscular projection fiber dataset as well as on simulated data are presented.
Název v anglickém jazyce
Neuromuscular fiber segmentation using particle filtering and discrete optimization
Popis výsledku anglicky
'We present an algorithm to segment a set of parallel, intertwined and bifurcating fibers from 3D images, targeted for identification of neuronal fibers in very large sets of 3D confocal microscopy images. The method consists of preprocessing, local calculation of fiber probabilities, seed detection, local tracking by particle filtering, global supervised seed clustering, and final voxel segmentation. The preprocessing uses a novel random local probability filtering segmentation. The global segmentationis solved by discrete optimization. The combination of global and local approaches makes the segmentation robust, yet the individual data blocks can be processed sequentially, limiting memory consumption. The method is automatic but efficient manual interaction is possible if needed. Initial promising results on a neuromuscular projection fiber dataset as well as on simulated data are presented.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP202%2F11%2F0111" target="_blank" >GAP202/11/0111: Automatická analýza obrazů nervové tkáně ze světelné a elektronové mikroskopie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů