Efficient GPU-based Decompression of BTF Data Compressed using Multi-Level Vector Quantization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F13%3A00211050" target="_blank" >RIV/68407700:21230/13:00211050 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.cescg.org/CESCG-2013/papers/Egert-Efficient_GPU-based_Decompression_of_BTF_Data_Compressed_using_Multi-Level_Vector_Quantization.pdf" target="_blank" >http://www.cescg.org/CESCG-2013/papers/Egert-Efficient_GPU-based_Decompression_of_BTF_Data_Compressed_using_Multi-Level_Vector_Quantization.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient GPU-based Decompression of BTF Data Compressed using Multi-Level Vector Quantization
Popis výsledku v původním jazyce
One of the main drawbacks of Bidirectional Texture Function (BTF), as a method of capturing realistic and accurate real-world material appearance, is the resulting size of the measured data set. Several lossy methods to compress the data were proposed over the years to cope with this problem. To efficiently use the compressed data an appropriate decompression algorithms are also needed, allowing fast random synthesis of BTF data without the need to reconstruct the whole BTF back to its original representation. One of such methods based on multi-level vector quantization and providing both good compression ratio and random access from the compressed data was proposed by Havran et al. in 2010. In this paper, we would like to share our experience with writing a GPU based implementation of the decompression part of the aforementioned method. Our goal was to evaluate the implementation difficulty, as well as the resulting performance and suitability of the algorithm for real-time use.
Název v anglickém jazyce
Efficient GPU-based Decompression of BTF Data Compressed using Multi-Level Vector Quantization
Popis výsledku anglicky
One of the main drawbacks of Bidirectional Texture Function (BTF), as a method of capturing realistic and accurate real-world material appearance, is the resulting size of the measured data set. Several lossy methods to compress the data were proposed over the years to cope with this problem. To efficiently use the compressed data an appropriate decompression algorithms are also needed, allowing fast random synthesis of BTF data without the need to reconstruct the whole BTF back to its original representation. One of such methods based on multi-level vector quantization and providing both good compression ratio and random access from the compressed data was proposed by Havran et al. in 2010. In this paper, we would like to share our experience with writing a GPU based implementation of the decompression part of the aforementioned method. Our goal was to evaluate the implementation difficulty, as well as the resulting performance and suitability of the algorithm for real-time use.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP202%2F12%2F2413" target="_blank" >GAP202/12/2413: Optimální algoritmy pro syntézu obrazu</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 17th Central European Seminar on Computer Graphics
ISBN
978-3-9502533-5-1
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
—
Název nakladatele
Institute of Computer Graphics and Algorithms
Místo vydání
Vienna
Místo konání akce
Smolenice
Datum konání akce
28. 4. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—