A Distributed Fault Detection System based on IWSN for Machine Condition Monitoring
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00208770" target="_blank" >RIV/68407700:21230/14:00208770 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6661382" target="_blank" >http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6661382</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TII.2013.2290432" target="_blank" >10.1109/TII.2013.2290432</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Distributed Fault Detection System based on IWSN for Machine Condition Monitoring
Popis výsledku v původním jazyce
This paper introduces a novel framework for Industrial Wireless Sensor Networks used for Machine Condition Monitoring. Our approach enables the use of state-of-the-art computationally intensive classifiers in computationally weak sensor network nodes. The key idea is to split data acquisition, classifier building and training, and the operation phase, between different units. Computationally demanding processing is carried out in the central unit, while other tasks are distributed to the sensor nodes using over-the-air programming. The system is autonomously trained on the healthy state of a machine, and then monitors a change in behavior which indicates a faulty state. Thanks to one-class classification, there is no need to introduce the faulty stateof the machine in the training phase. We extend the diagnostic capability of the system using dynamic changes in the data acquisition and classification parts of the program in the sensor nodes. This enables the system to react to ambiguo
Název v anglickém jazyce
A Distributed Fault Detection System based on IWSN for Machine Condition Monitoring
Popis výsledku anglicky
This paper introduces a novel framework for Industrial Wireless Sensor Networks used for Machine Condition Monitoring. Our approach enables the use of state-of-the-art computationally intensive classifiers in computationally weak sensor network nodes. The key idea is to split data acquisition, classifier building and training, and the operation phase, between different units. Computationally demanding processing is carried out in the central unit, while other tasks are distributed to the sensor nodes using over-the-air programming. The system is autonomously trained on the healthy state of a machine, and then monitors a change in behavior which indicates a faulty state. Thanks to one-class classification, there is no need to introduce the faulty stateof the machine in the training phase. We extend the diagnostic capability of the system using dynamic changes in the data acquisition and classification parts of the program in the sensor nodes. This enables the system to react to ambiguo
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Industrial Informatics, IEEE Transactions on
ISSN
1551-3203
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
1118-1123
Kód UT WoS článku
000336669800026
EID výsledku v databázi Scopus
—