Wayside Diagnosis Of Metro Wheelsets Using Acoustic Sensor Data And One-Period Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F17%3A39910395" target="_blank" >RIV/00216275:25510/17:39910395 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.engmech.cz/2017/im/doc/EM2017_proceedings_all.pdf" target="_blank" >http://www.engmech.cz/2017/im/doc/EM2017_proceedings_all.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wayside Diagnosis Of Metro Wheelsets Using Acoustic Sensor Data And One-Period Analysis
Popis výsledku v původním jazyce
This research promises a wheelset fault diagnosis methodology for metro train sets using wayside acoustic sensors information. Throughout the research, two different feature extraction techniques; Wavelet Packet Energy (WPE) and Time-domain Features (TDF) are employed in association with two state-of-art classifiers Fisher Linear Discriminant Analysis (FLDA) and Support Vector Machines (SVMs). The database is prepared by the acquisition of wayside acoustic sensor data accompanied by optical gates that detect wheelset center position while multiple passing of a single metro train set of type 81-71M is in daily operation with the contribution of a novel approach; one-period analysis. Acquired database is then divided into two classes which represent the healthy and faulty states of the wheelsets referring to the ground truth information of a faulty wheelset. Since the faulty states are insufficient to demonstrate the real classification performance, an adaptive synthetic sampling technique (ADASYN) is utilized to increase the number of faulty states. Promising results are observed up to 93% in classification of faulty wheelsets of the metro with the proposed techniques on acoustic sensor data. This study may aid to maintenance specialists to providing a cost effective monitoring of faulty condition of metro wheelsets.
Název v anglickém jazyce
Wayside Diagnosis Of Metro Wheelsets Using Acoustic Sensor Data And One-Period Analysis
Popis výsledku anglicky
This research promises a wheelset fault diagnosis methodology for metro train sets using wayside acoustic sensors information. Throughout the research, two different feature extraction techniques; Wavelet Packet Energy (WPE) and Time-domain Features (TDF) are employed in association with two state-of-art classifiers Fisher Linear Discriminant Analysis (FLDA) and Support Vector Machines (SVMs). The database is prepared by the acquisition of wayside acoustic sensor data accompanied by optical gates that detect wheelset center position while multiple passing of a single metro train set of type 81-71M is in daily operation with the contribution of a novel approach; one-period analysis. Acquired database is then divided into two classes which represent the healthy and faulty states of the wheelsets referring to the ground truth information of a faulty wheelset. Since the faulty states are insufficient to demonstrate the real classification performance, an adaptive synthetic sampling technique (ADASYN) is utilized to increase the number of faulty states. Promising results are observed up to 93% in classification of faulty wheelsets of the metro with the proposed techniques on acoustic sensor data. This study may aid to maintenance specialists to providing a cost effective monitoring of faulty condition of metro wheelsets.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20306 - Audio engineering, reliability analysis
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Engineering Mechanics 2017 : 23rd International Conference book of fulltexts
ISBN
978-80-214-5497-2
ISSN
1805-8248
e-ISSN
neuvedeno
Počet stran výsledku
4
Strana od-do
458-461
Název nakladatele
Vysoké učení technické v Brně
Místo vydání
Brno
Místo konání akce
Svratka
Datum konání akce
15. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000411657600104