Vibration based diagnosis of wheel defects of metro train sets using one period analysis on the wayside
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F17%3A39910397" target="_blank" >RIV/00216275:25510/17:39910397 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.21595/vp.2017.18492" target="_blank" >http://dx.doi.org/10.21595/vp.2017.18492</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21595/vp.2017.18492" target="_blank" >10.21595/vp.2017.18492</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Vibration based diagnosis of wheel defects of metro train sets using one period analysis on the wayside
Popis výsledku v původním jazyce
This research examines two different methods; Wavelet Packet Energy (WPE) and Time-domain Features (TDF) which are effective in faulty signal feature extraction of metro wheels in wayside level using vibration sensors. Signals of each wheelset passing of a trainset with both healthy and faulty wheels are recorded by the vibration sensors which are mounted on both left and right rails and a novel one-period sampling is performed at 51.2 kHz sample rate. Retrieved signal samples are used in the construction of a database which is consistent of healthy and faulty cases. Since the database has insufficient number of faulty samples, the database is balanced by a method so called Adaptive Synthetic Sampling (ADASYN) so that each class has the same number of observations. Two state-of art classifiers; Support Vector Machines (SVM) and Fisher Linear Discriminant Analysis (FLDA) are employed by utilizing 16-fold cross validation to solve the two-class problem. Referring to the results, SVM-I-TDF outperforms by classifying all samples with a success rate of 100 % and other methods have also promising results. Proposed methods may be used in the condition monitoring of metro wheelsets effectively by means of not only performance but also cost-efficiency.
Název v anglickém jazyce
Vibration based diagnosis of wheel defects of metro train sets using one period analysis on the wayside
Popis výsledku anglicky
This research examines two different methods; Wavelet Packet Energy (WPE) and Time-domain Features (TDF) which are effective in faulty signal feature extraction of metro wheels in wayside level using vibration sensors. Signals of each wheelset passing of a trainset with both healthy and faulty wheels are recorded by the vibration sensors which are mounted on both left and right rails and a novel one-period sampling is performed at 51.2 kHz sample rate. Retrieved signal samples are used in the construction of a database which is consistent of healthy and faulty cases. Since the database has insufficient number of faulty samples, the database is balanced by a method so called Adaptive Synthetic Sampling (ADASYN) so that each class has the same number of observations. Two state-of art classifiers; Support Vector Machines (SVM) and Fisher Linear Discriminant Analysis (FLDA) are employed by utilizing 16-fold cross validation to solve the two-class problem. Referring to the results, SVM-I-TDF outperforms by classifying all samples with a success rate of 100 % and other methods have also promising results. Proposed methods may be used in the condition monitoring of metro wheelsets effectively by means of not only performance but also cost-efficiency.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20306 - Audio engineering, reliability analysis
Návaznosti výsledku
Projekt
<a href="/cs/project/TE01020038" target="_blank" >TE01020038: Centrum kompetence drážních vozidel</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Vibroengineering Procedia
ISBN
—
ISSN
2345-0533
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
13-18
Název nakladatele
JVE International
Místo vydání
Kaunas
Místo konání akce
Liberec
Datum konání akce
30. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—