Wayside Condition Monitoring of Metro Wheelsets Using Vibration and Acoustic Sensors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F24%3A39921498" target="_blank" >RIV/00216275:25510/24:39921498 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.iieta.org/journals/ts/paper/10.18280/ts.410316" target="_blank" >https://www.iieta.org/journals/ts/paper/10.18280/ts.410316</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18280/ts.410316" target="_blank" >10.18280/ts.410316</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wayside Condition Monitoring of Metro Wheelsets Using Vibration and Acoustic Sensors
Popis výsledku v původním jazyce
This paper presents an efficient wayside acoustic and vibration-based detection for wheelset faults on metro trains, which is crucial for the safety of the run. The proposed condition monitoring scheme includes four main steps: data acquisition, signal segmentation by one-period analysis, feature extraction; Time-Domain Features (TDF), Wavelet Packet Energy (WPE) features, and Linear Configuration Pattern Kurtograms (LCP-K), which applies a location invariant textural descriptor to Kurtogram images of the signal, and classification with state-of-art; Fisher’s Linear Discriminant Analysis (FLDA), Support Vector Machine (SVM), Decision Tree (Dec. Tree) and Linear Perceptron classifiers alongside classifier combination techniques. During the research, results are obtained on both measured and boosted data. Thus, two databases (A1 and A2), each of which consists of measured vibration and acoustic signals belonging to healthy and faulty cases of the wheelsets of Prague metros, are established. Due to a limited number of faulty instances, features are augmented with Adaptive Synthetic Sampling (ADASYN), and larger vibration and acoustic databases SA1 and SA2 are established to validate methods. Obtained results show that TDF with Dec. Tree classifier can detect wheelset faults by 100% with vibrations signals (A1), and the novel LCP-K algorithm outperforms both acoustic databases (A2 and SA2) up to 93%, and finally, WPE features via combined classifies, reaches a 100% fault detection performance. The proposed framework provides cost-effective maintenance, which can aid metro train specialists, with potential further applicability to other types of railways.
Název v anglickém jazyce
Wayside Condition Monitoring of Metro Wheelsets Using Vibration and Acoustic Sensors
Popis výsledku anglicky
This paper presents an efficient wayside acoustic and vibration-based detection for wheelset faults on metro trains, which is crucial for the safety of the run. The proposed condition monitoring scheme includes four main steps: data acquisition, signal segmentation by one-period analysis, feature extraction; Time-Domain Features (TDF), Wavelet Packet Energy (WPE) features, and Linear Configuration Pattern Kurtograms (LCP-K), which applies a location invariant textural descriptor to Kurtogram images of the signal, and classification with state-of-art; Fisher’s Linear Discriminant Analysis (FLDA), Support Vector Machine (SVM), Decision Tree (Dec. Tree) and Linear Perceptron classifiers alongside classifier combination techniques. During the research, results are obtained on both measured and boosted data. Thus, two databases (A1 and A2), each of which consists of measured vibration and acoustic signals belonging to healthy and faulty cases of the wheelsets of Prague metros, are established. Due to a limited number of faulty instances, features are augmented with Adaptive Synthetic Sampling (ADASYN), and larger vibration and acoustic databases SA1 and SA2 are established to validate methods. Obtained results show that TDF with Dec. Tree classifier can detect wheelset faults by 100% with vibrations signals (A1), and the novel LCP-K algorithm outperforms both acoustic databases (A2 and SA2) up to 93%, and finally, WPE features via combined classifies, reaches a 100% fault detection performance. The proposed framework provides cost-effective maintenance, which can aid metro train specialists, with potential further applicability to other types of railways.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Traitement du Signal
ISSN
0765-0019
e-ISSN
1958-5608
Svazek periodika
41
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CA - Kanada
Počet stran výsledku
12
Strana od-do
1271-1282
Kód UT WoS článku
001260365800016
EID výsledku v databázi Scopus
—