Wayside Diagnosis of Wheelset Faults of Metros using One-period Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F17%3A39910857" target="_blank" >RIV/00216275:25510/17:39910857 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Wayside Diagnosis of Wheelset Faults of Metros using One-period Analysis
Popis výsledku v původním jazyce
This research is focused on detection of wheelset faults of Prague metro train set of type 81-71M using vibration sensors on the wayside with the contribution of a novel one period analysis. Vibration sensor activities for each metro passing are recorded by two accelerometer sensors which are mounted on both right and left rail for all day while metros are in routine operation. Signal samples of two known faulty wheels of a wheelset on ID-108 metro are used as ground truth information in comparison to ID-119 healthy data. The database has 16 faulty signal samples against 16 healthy ones. Three different methodologies; Wavelet Packet Energy (WPE), Time-Domain Features (TDF) and Linear Configuration Pattern Kurtograms (LCP-K) are used with Fisher Linear Discriminant Analysis and Support Vector Machines classifiers. Outstanding results are observed among proposed techniques up to 100%. Proposed methods may be used for a cost-effective wayside diagnostic system for railway vehicles.
Název v anglickém jazyce
Wayside Diagnosis of Wheelset Faults of Metros using One-period Analysis
Popis výsledku anglicky
This research is focused on detection of wheelset faults of Prague metro train set of type 81-71M using vibration sensors on the wayside with the contribution of a novel one period analysis. Vibration sensor activities for each metro passing are recorded by two accelerometer sensors which are mounted on both right and left rail for all day while metros are in routine operation. Signal samples of two known faulty wheels of a wheelset on ID-108 metro are used as ground truth information in comparison to ID-119 healthy data. The database has 16 faulty signal samples against 16 healthy ones. Three different methodologies; Wavelet Packet Energy (WPE), Time-Domain Features (TDF) and Linear Configuration Pattern Kurtograms (LCP-K) are used with Fisher Linear Discriminant Analysis and Support Vector Machines classifiers. Outstanding results are observed among proposed techniques up to 100%. Proposed methods may be used for a cost-effective wayside diagnostic system for railway vehicles.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20104 - Transport engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TE01020038" target="_blank" >TE01020038: Centrum kompetence drážních vozidel</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Symposium on Electrical Railway Transportation Systems : symposium proceedings
ISBN
978-605-01-1072-2
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
4
Strana od-do
23-26
Název nakladatele
The Chamber of Electrical Engineers, Eskişehir branch
Místo vydání
Eskişehir
Místo konání akce
Eskişehir
Datum konání akce
27. 10. 2017
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—