Q-Learning Algorithm Module in Hybrid Artificial Neural Network Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00217982" target="_blank" >RIV/68407700:21230/14:00217982 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/chapter/10.1007/978-3-319-06740-7_11" target="_blank" >http://link.springer.com/chapter/10.1007/978-3-319-06740-7_11</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-06740-7_11" target="_blank" >10.1007/978-3-319-06740-7_11</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Q-Learning Algorithm Module in Hybrid Artificial Neural Network Systems
Popis výsledku v původním jazyce
Presented topic is from the research field called Artificial Life, but contributes also to the field of Artificial Intelligence (AI), Robotics and potentially into many other aspects of research. In this paper, there is reviewed and tested new approach to autonomous design of agent architectures. This novel approach is inspired by inherited modularity of biological brains. During designing of new brains, the evolution is not directly connecting individual neurons. Rather than that, it composes new brains by connecting larger, widely reused areas (modules). In this approach, agent architectures are represented as hybrid artificial neural networks composed of heterogeneous modules. Each module can implement different selected algorithm. Rather than describing this framework, this paper focuses on designing of one module. Such a module represents one component of hybrid neural network and can seamlessly integrate a selected algorithm into the node. The course of design of such a module is
Název v anglickém jazyce
Q-Learning Algorithm Module in Hybrid Artificial Neural Network Systems
Popis výsledku anglicky
Presented topic is from the research field called Artificial Life, but contributes also to the field of Artificial Intelligence (AI), Robotics and potentially into many other aspects of research. In this paper, there is reviewed and tested new approach to autonomous design of agent architectures. This novel approach is inspired by inherited modularity of biological brains. During designing of new brains, the evolution is not directly connecting individual neurons. Rather than that, it composes new brains by connecting larger, widely reused areas (modules). In this approach, agent architectures are represented as hybrid artificial neural networks composed of heterogeneous modules. Each module can implement different selected algorithm. Rather than describing this framework, this paper focuses on designing of one module. Such a module represents one component of hybrid neural network and can seamlessly integrate a selected algorithm into the node. The course of design of such a module is
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Modern Trends and Techniques in Computer Science
ISBN
978-3-319-06739-1
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
11
Strana od-do
117-127
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
on-line
Datum konání akce
28. 4. 2014
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—