Towards Evolutionary Design of Complex Systems Inspired by Nature
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00224724" target="_blank" >RIV/68407700:21230/14:00224724 - isvavai.cz</a>
Výsledek na webu
<a href="https://ojs.cvut.cz/ojs/index.php/ap/article/view/AP.2014.54.0367" target="_blank" >https://ojs.cvut.cz/ojs/index.php/ap/article/view/AP.2014.54.0367</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/AP.2014.54.0367" target="_blank" >10.14311/AP.2014.54.0367</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Evolutionary Design of Complex Systems Inspired by Nature
Popis výsledku v původním jazyce
This paper presents first steps towards evolutionary design of complex autonomous systems. The approach is inspired by modularity of human brain and principles of evolution. Rather than evolving neural networks or neural-based systems, the approach focuses on evolving hybrid networks composed of heterogeneous sub-systems implementing various algorithms/behaviors. Currently, the evolutionary techniques are used to optimize weights between predefined blocks (so called Neural Modules) in order to find an agent architecture appropriate for given task. The framework, together with the simulator of such systems is presented. Then, examples of agent architectures represented as hybrid networks are presented. One architecture is hand-designed and one is automatically optimized by means of Evolutionary Algorithm. Even on such a simple experiment, it can be observed how the evolution is able to pick-up unexpected attributes of the task and exploit them when designing new architecture.
Název v anglickém jazyce
Towards Evolutionary Design of Complex Systems Inspired by Nature
Popis výsledku anglicky
This paper presents first steps towards evolutionary design of complex autonomous systems. The approach is inspired by modularity of human brain and principles of evolution. Rather than evolving neural networks or neural-based systems, the approach focuses on evolving hybrid networks composed of heterogeneous sub-systems implementing various algorithms/behaviors. Currently, the evolutionary techniques are used to optimize weights between predefined blocks (so called Neural Modules) in order to find an agent architecture appropriate for given task. The framework, together with the simulator of such systems is presented. Then, examples of agent architectures represented as hybrid networks are presented. One architecture is hand-designed and one is automatically optimized by means of Evolutionary Algorithm. Even on such a simple experiment, it can be observed how the evolution is able to pick-up unexpected attributes of the task and exploit them when designing new architecture.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Polytechnica
ISSN
1210-2709
e-ISSN
—
Svazek periodika
54
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
11
Strana od-do
367-377
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—