Mean Squared Error Minimization for Inverse Moment Problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00218836" target="_blank" >RIV/68407700:21230/14:00218836 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00245-013-9235-z" target="_blank" >http://dx.doi.org/10.1007/s00245-013-9235-z</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00245-013-9235-z" target="_blank" >10.1007/s00245-013-9235-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mean Squared Error Minimization for Inverse Moment Problems
Popis výsledku v původním jazyce
We consider the problem of approximating the unknown density of a measure on , absolutely continuous with respect to some given reference measure , only from the knowledge of finitely many moments of . Given and moments of order , we provide a polynomialwhich minimizes the mean square error over all polynomials of degree at most . If there is no additional requirement, is obtained as solution of a linear system. In addition, if is expressed in the basis of polynomials that are orthonormal with respectto , its vector of coefficients is just the vector of given moments and no computation is needed. Moreover in as . In general nonnegativity of is not guaranteed even though is nonnegative. However, with this additional nonnegativity requirement one obtains analogous results but computing that minimizes now requires solving an appropriate semidefinite program. We have tested the approach on some applications arising from the reconstruction of geometrical objects and the approximation of s
Název v anglickém jazyce
Mean Squared Error Minimization for Inverse Moment Problems
Popis výsledku anglicky
We consider the problem of approximating the unknown density of a measure on , absolutely continuous with respect to some given reference measure , only from the knowledge of finitely many moments of . Given and moments of order , we provide a polynomialwhich minimizes the mean square error over all polynomials of degree at most . If there is no additional requirement, is obtained as solution of a linear system. In addition, if is expressed in the basis of polynomials that are orthonormal with respectto , its vector of coefficients is just the vector of given moments and no computation is needed. Moreover in as . In general nonnegativity of is not guaranteed even though is nonnegative. However, with this additional nonnegativity requirement one obtains analogous results but computing that minimizes now requires solving an appropriate semidefinite program. We have tested the approach on some applications arising from the reconstruction of geometrical objects and the approximation of s
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-06894S" target="_blank" >GA13-06894S: Semidefinitní programování pro polynomiální problémy optimálního řízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Mathematics & Optimization
ISSN
0095-4616
e-ISSN
—
Svazek periodika
70
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
83-110
Kód UT WoS článku
000339107200004
EID výsledku v databázi Scopus
—