Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

CONVEX COMPUTATION OF THE MAXIMUM CONTROLLED INVARIANT SET FOR POLYNOMIAL CONTROL SYSTEMS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F14%3A00220940" target="_blank" >RIV/68407700:21230/14:00220940 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1137/130914565" target="_blank" >http://dx.doi.org/10.1137/130914565</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/130914565" target="_blank" >10.1137/130914565</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    CONVEX COMPUTATION OF THE MAXIMUM CONTROLLED INVARIANT SET FOR POLYNOMIAL CONTROL SYSTEMS

  • Popis výsledku v původním jazyce

    We characterize the maximum controlled invariant (MCI) set for discrete- as well as continuous-time nonlinear dynamical systems as the solution of an infinite-dimensional linear programming problem. For systems with polynomial dynamics and compact semialgebraic state and control constraints, we describe a hierarchy of finite-dimensional linear matrix inequality (LMI) relaxations whose optimal values converge to the volume of the MCI set; dual to these LMI relaxations are sum-of-squares (SOS) problems providing a converging sequence of outer approximations to the MCI set. The approach is simple and readily applicable in the sense that the approximations are the outcome of a single semidefinite program with no additional input apart from the problem description. A number of numerical examples illustrate the approach.

  • Název v anglickém jazyce

    CONVEX COMPUTATION OF THE MAXIMUM CONTROLLED INVARIANT SET FOR POLYNOMIAL CONTROL SYSTEMS

  • Popis výsledku anglicky

    We characterize the maximum controlled invariant (MCI) set for discrete- as well as continuous-time nonlinear dynamical systems as the solution of an infinite-dimensional linear programming problem. For systems with polynomial dynamics and compact semialgebraic state and control constraints, we describe a hierarchy of finite-dimensional linear matrix inequality (LMI) relaxations whose optimal values converge to the volume of the MCI set; dual to these LMI relaxations are sum-of-squares (SOS) problems providing a converging sequence of outer approximations to the MCI set. The approach is simple and readily applicable in the sense that the approximations are the outcome of a single semidefinite program with no additional input apart from the problem description. A number of numerical examples illustrate the approach.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BC - Teorie a systémy řízení

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA13-06894S" target="_blank" >GA13-06894S: Semidefinitní programování pro polynomiální problémy optimálního řízení</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal on Control and Optimization

  • ISSN

    0363-0129

  • e-ISSN

  • Svazek periodika

    52

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    26

  • Strana od-do

    2944-2969

  • Kód UT WoS článku

    000344748000012

  • EID výsledku v databázi Scopus