Sequential Pattern Mining for Discovering Gene Interactions and their Contextual Information from Biomedical Texts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00229981" target="_blank" >RIV/68407700:21230/15:00229981 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.biomedcentral.com/content/pdf/s13326-015-0023-3.pdf" target="_blank" >http://www.biomedcentral.com/content/pdf/s13326-015-0023-3.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s13326-015-0023-3" target="_blank" >10.1186/s13326-015-0023-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sequential Pattern Mining for Discovering Gene Interactions and their Contextual Information from Biomedical Texts
Popis výsledku v původním jazyce
BACKGROUND: Discovering gene interactions and their characterizations from biological text collections is a crucial issue in bioinformatics. Indeed, text collections are large and it is very difficult for biologists to fully take benefit from this amountof knowledge. Natural Language Processing (NLP) methods have been applied to extract background knowledge from biomedical texts. Some of existing NLP approaches are based on handcrafted rules and thus are time consuming and often devoted to a specific corpus. Machine learning based NLP methods, give good results but generate outcomes that are not really understandable by a user. RESULTS: We take advantage of an hybridization of data mining and natural language processing to propose an original symbolicmethod to automatically produce patterns conveying gene interactions and their characterizations. Therefore, our method not only allows gene interactions but also semantics information on the extracted interactions (e.g., modalities, bio
Název v anglickém jazyce
Sequential Pattern Mining for Discovering Gene Interactions and their Contextual Information from Biomedical Texts
Popis výsledku anglicky
BACKGROUND: Discovering gene interactions and their characterizations from biological text collections is a crucial issue in bioinformatics. Indeed, text collections are large and it is very difficult for biologists to fully take benefit from this amountof knowledge. Natural Language Processing (NLP) methods have been applied to extract background knowledge from biomedical texts. Some of existing NLP approaches are based on handcrafted rules and thus are time consuming and often devoted to a specific corpus. Machine learning based NLP methods, give good results but generate outcomes that are not really understandable by a user. RESULTS: We take advantage of an hybridization of data mining and natural language processing to propose an original symbolicmethod to automatically produce patterns conveying gene interactions and their characterizations. Therefore, our method not only allows gene interactions but also semantics information on the extracted interactions (e.g., modalities, bio
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Biomedical Semantics
ISSN
2041-1480
e-ISSN
—
Svazek periodika
6:27
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000354922800001
EID výsledku v databázi Scopus
2-s2.0-84938814624